0 JBC
↳1 JBCToGraph (⇒, 150 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 110 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 170 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB15 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x == y && x > z) {
while (y > z) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 20 rules for P and 0 rules for R.
P rules:
742_0_main_Load(EOS(STATIC_742), i125, i126, i87, i125) → 744_0_main_NE(EOS(STATIC_744), i125, i126, i87, i125, i126)
744_0_main_NE(EOS(STATIC_744), i126, i126, i87, i126, i126) → 748_0_main_NE(EOS(STATIC_748), i126, i126, i87, i126, i126)
748_0_main_NE(EOS(STATIC_748), i126, i126, i87, i126, i126) → 752_0_main_Load(EOS(STATIC_752), i126, i126, i87)
752_0_main_Load(EOS(STATIC_752), i126, i126, i87) → 755_0_main_Load(EOS(STATIC_755), i126, i126, i87, i126)
755_0_main_Load(EOS(STATIC_755), i126, i126, i87, i126) → 757_0_main_LE(EOS(STATIC_757), i126, i126, i87, i126, i87)
757_0_main_LE(EOS(STATIC_757), i126, i126, i87, i126, i87) → 760_0_main_LE(EOS(STATIC_760), i126, i126, i87, i126, i87)
760_0_main_LE(EOS(STATIC_760), i126, i126, i87, i126, i87) → 766_0_main_Load(EOS(STATIC_766), i126, i126, i87) | >(i126, i87)
766_0_main_Load(EOS(STATIC_766), i126, i126, i87) → 793_0_main_Load(EOS(STATIC_793), i126, i126, i87)
793_0_main_Load(EOS(STATIC_793), i134, i135, i87) → 795_0_main_Load(EOS(STATIC_795), i134, i135, i87, i135)
795_0_main_Load(EOS(STATIC_795), i134, i135, i87, i135) → 798_0_main_LE(EOS(STATIC_798), i134, i135, i87, i135, i87)
798_0_main_LE(EOS(STATIC_798), i134, i135, i87, i135, i87) → 800_0_main_LE(EOS(STATIC_800), i134, i135, i87, i135, i87)
798_0_main_LE(EOS(STATIC_798), i134, i135, i87, i135, i87) → 801_0_main_LE(EOS(STATIC_801), i134, i135, i87, i135, i87)
800_0_main_LE(EOS(STATIC_800), i134, i135, i87, i135, i87) → 804_0_main_Load(EOS(STATIC_804), i134, i135, i87) | <=(i135, i87)
804_0_main_Load(EOS(STATIC_804), i134, i135, i87) → 739_0_main_Load(EOS(STATIC_739), i134, i135, i87)
739_0_main_Load(EOS(STATIC_739), i125, i126, i87) → 742_0_main_Load(EOS(STATIC_742), i125, i126, i87, i125)
801_0_main_LE(EOS(STATIC_801), i134, i135, i87, i135, i87) → 806_0_main_Inc(EOS(STATIC_806), i134, i135, i87) | >(i135, i87)
806_0_main_Inc(EOS(STATIC_806), i134, i135, i87) → 808_0_main_Inc(EOS(STATIC_808), +(i134, -1), i135, i87)
808_0_main_Inc(EOS(STATIC_808), i144, i135, i87) → 810_0_main_JMP(EOS(STATIC_810), i144, +(i135, -1), i87)
810_0_main_JMP(EOS(STATIC_810), i144, i145, i87) → 813_0_main_Load(EOS(STATIC_813), i144, i145, i87)
813_0_main_Load(EOS(STATIC_813), i144, i145, i87) → 793_0_main_Load(EOS(STATIC_793), i144, i145, i87)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
798_0_main_LE(EOS(STATIC_798), x0, x0, x1, x0, x1) → 798_0_main_LE(EOS(STATIC_798), x0, x0, x1, x0, x1) | FALSE
798_0_main_LE(EOS(STATIC_798), x0, x1, x2, x1, x2) → 798_0_main_LE(EOS(STATIC_798), +(x0, -1), +(x1, -1), x2, +(x1, -1), x2) | <(x2, x1)
R rules:
Filtered ground terms:
798_0_main_LE(x1, x2, x3, x4, x5, x6) → 798_0_main_LE(x2, x3, x4, x5, x6)
EOS(x1) → EOS
Cond_798_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_798_0_main_LE(x1, x3, x4, x5, x6, x7)
Filtered duplicate args:
798_0_main_LE(x1, x2, x3, x4, x5) → 798_0_main_LE(x1, x4, x5)
Cond_798_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_798_0_main_LE(x1, x2, x5, x6)
Filtered unneeded arguments:
Cond_798_0_main_LE(x1, x2, x3, x4) → Cond_798_0_main_LE(x1, x3, x4)
798_0_main_LE(x1, x2, x3) → 798_0_main_LE(x2, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
798_0_main_LE(x1, x2) → 798_0_main_LE(+(x1, -1), x2) | <(x2, x1)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
798_0_MAIN_LE(x1, x2) → COND_798_0_MAIN_LE(<(x2, x1), x1, x2)
COND_798_0_MAIN_LE(TRUE, x1, x2) → 798_0_MAIN_LE(+(x1, -1), x2)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x2[0] < x1[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) -> (0), if (x1[1] + -1 →* x1[0]∧x2[1] →* x2[0])
(1) (<(x2[0], x1[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 798_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧798_0_MAIN_LE(x1[0], x2[0])≥COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(2) (<(x2[0], x1[0])=TRUE ⇒ 798_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧798_0_MAIN_LE(x1[0], x2[0])≥COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(3) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(9) (COND_798_0_MAIN_LE(TRUE, x1[1], x2[1])≥NonInfC∧COND_798_0_MAIN_LE(TRUE, x1[1], x2[1])≥798_0_MAIN_LE(+(x1[1], -1), x2[1])∧(UIncreasing(798_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥))
(10) ((UIncreasing(798_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(11) ((UIncreasing(798_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(12) ((UIncreasing(798_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(13) ((UIncreasing(798_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(798_0_MAIN_LE(x1, x2)) = [1] + [-1]x2 + x1
POL(COND_798_0_MAIN_LE(x1, x2, x3)) = [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
798_0_MAIN_LE(x1[0], x2[0]) → COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
798_0_MAIN_LE(x1[0], x2[0]) → COND_798_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
COND_798_0_MAIN_LE(TRUE, x1[1], x2[1]) → 798_0_MAIN_LE(+(x1[1], -1), x2[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer