0 JBC
↳1 JBCToGraph (⇒, 1080 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 150 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB15 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x == y && x > z) {
while (y > z) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 20 rules for P and 0 rules for R.
P rules:
1331_0_main_Load(EOS(STATIC_1331), i365, i366, i85, i365) → 1332_0_main_NE(EOS(STATIC_1332), i365, i366, i85, i365, i366)
1332_0_main_NE(EOS(STATIC_1332), i366, i366, i85, i366, i366) → 1335_0_main_NE(EOS(STATIC_1335), i366, i366, i85, i366, i366)
1335_0_main_NE(EOS(STATIC_1335), i366, i366, i85, i366, i366) → 1338_0_main_Load(EOS(STATIC_1338), i366, i366, i85)
1338_0_main_Load(EOS(STATIC_1338), i366, i366, i85) → 1340_0_main_Load(EOS(STATIC_1340), i366, i366, i85, i366)
1340_0_main_Load(EOS(STATIC_1340), i366, i366, i85, i366) → 1341_0_main_LE(EOS(STATIC_1341), i366, i366, i85, i366, i85)
1341_0_main_LE(EOS(STATIC_1341), i366, i366, i85, i366, i85) → 1344_0_main_LE(EOS(STATIC_1344), i366, i366, i85, i366, i85)
1344_0_main_LE(EOS(STATIC_1344), i366, i366, i85, i366, i85) → 1347_0_main_Load(EOS(STATIC_1347), i366, i366, i85) | >(i366, i85)
1347_0_main_Load(EOS(STATIC_1347), i366, i366, i85) → 1568_0_main_Load(EOS(STATIC_1568), i366, i366, i85)
1568_0_main_Load(EOS(STATIC_1568), i542, i543, i85) → 1570_0_main_Load(EOS(STATIC_1570), i542, i543, i85, i543)
1570_0_main_Load(EOS(STATIC_1570), i542, i543, i85, i543) → 1572_0_main_LE(EOS(STATIC_1572), i542, i543, i85, i543, i85)
1572_0_main_LE(EOS(STATIC_1572), i542, i543, i85, i543, i85) → 1573_0_main_LE(EOS(STATIC_1573), i542, i543, i85, i543, i85)
1572_0_main_LE(EOS(STATIC_1572), i542, i543, i85, i543, i85) → 1575_0_main_LE(EOS(STATIC_1575), i542, i543, i85, i543, i85)
1573_0_main_LE(EOS(STATIC_1573), i542, i543, i85, i543, i85) → 1577_0_main_Load(EOS(STATIC_1577), i542, i543, i85) | <=(i543, i85)
1577_0_main_Load(EOS(STATIC_1577), i542, i543, i85) → 1328_0_main_Load(EOS(STATIC_1328), i542, i543, i85)
1328_0_main_Load(EOS(STATIC_1328), i365, i366, i85) → 1331_0_main_Load(EOS(STATIC_1331), i365, i366, i85, i365)
1575_0_main_LE(EOS(STATIC_1575), i542, i543, i85, i543, i85) → 1579_0_main_Inc(EOS(STATIC_1579), i542, i543, i85) | >(i543, i85)
1579_0_main_Inc(EOS(STATIC_1579), i542, i543, i85) → 1873_0_main_Inc(EOS(STATIC_1873), +(i542, -1), i543, i85)
1873_0_main_Inc(EOS(STATIC_1873), i731, i543, i85) → 1875_0_main_JMP(EOS(STATIC_1875), i731, +(i543, -1), i85)
1875_0_main_JMP(EOS(STATIC_1875), i731, i732, i85) → 1879_0_main_Load(EOS(STATIC_1879), i731, i732, i85)
1879_0_main_Load(EOS(STATIC_1879), i731, i732, i85) → 1568_0_main_Load(EOS(STATIC_1568), i731, i732, i85)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1572_0_main_LE(EOS(STATIC_1572), x0, x0, x1, x0, x1) → 1572_0_main_LE(EOS(STATIC_1572), x0, x0, x1, x0, x1) | FALSE
1572_0_main_LE(EOS(STATIC_1572), x0, x1, x2, x1, x2) → 1572_0_main_LE(EOS(STATIC_1572), +(x0, -1), +(x1, -1), x2, +(x1, -1), x2) | <(x2, x1)
R rules:
Filtered ground terms:
1572_0_main_LE(x1, x2, x3, x4, x5, x6) → 1572_0_main_LE(x2, x3, x4, x5, x6)
EOS(x1) → EOS
Cond_1572_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1572_0_main_LE(x1, x3, x4, x5, x6, x7)
Filtered duplicate args:
1572_0_main_LE(x1, x2, x3, x4, x5) → 1572_0_main_LE(x1, x4, x5)
Cond_1572_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_1572_0_main_LE(x1, x2, x5, x6)
Filtered unneeded arguments:
Cond_1572_0_main_LE(x1, x2, x3, x4) → Cond_1572_0_main_LE(x1, x3, x4)
1572_0_main_LE(x1, x2, x3) → 1572_0_main_LE(x2, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
1572_0_main_LE(x1, x2) → 1572_0_main_LE(+(x1, -1), x2) | <(x2, x1)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1572_0_MAIN_LE(x1, x2) → COND_1572_0_MAIN_LE(<(x2, x1), x1, x2)
COND_1572_0_MAIN_LE(TRUE, x1, x2) → 1572_0_MAIN_LE(+(x1, -1), x2)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x2[0] < x1[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) -> (0), if (x1[1] + -1 →* x1[0]∧x2[1] →* x2[0])
(1) (<(x2[0], x1[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 1572_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧1572_0_MAIN_LE(x1[0], x2[0])≥COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(2) (<(x2[0], x1[0])=TRUE ⇒ 1572_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧1572_0_MAIN_LE(x1[0], x2[0])≥COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(3) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(3)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(3)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(3)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(9) (COND_1572_0_MAIN_LE(TRUE, x1[1], x2[1])≥NonInfC∧COND_1572_0_MAIN_LE(TRUE, x1[1], x2[1])≥1572_0_MAIN_LE(+(x1[1], -1), x2[1])∧(UIncreasing(1572_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥))
(10) ((UIncreasing(1572_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(11) ((UIncreasing(1572_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(12) ((UIncreasing(1572_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(13) ((UIncreasing(1572_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1572_0_MAIN_LE(x1, x2)) = [2] + [-1]x2 + x1
POL(COND_1572_0_MAIN_LE(x1, x2, x3)) = [1] + [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
1572_0_MAIN_LE(x1[0], x2[0]) → COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
1572_0_MAIN_LE(x1[0], x2[0]) → COND_1572_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
COND_1572_0_MAIN_LE(TRUE, x1[1], x2[1]) → 1572_0_MAIN_LE(+(x1[1], -1), x2[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer