0 JBC
↳1 JBCToGraph (⇒, 830 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 40 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 120 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB14 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x == y && x > 0) {
while (y > 0) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 19 rules for P and 0 rules for R.
P rules:
1160_0_main_Load(EOS(STATIC_1160), i441, i442, i441) → 1162_0_main_NE(EOS(STATIC_1162), i441, i442, i441, i442)
1162_0_main_NE(EOS(STATIC_1162), i442, i442, i442, i442) → 1165_0_main_NE(EOS(STATIC_1165), i442, i442, i442, i442)
1165_0_main_NE(EOS(STATIC_1165), i442, i442, i442, i442) → 1168_0_main_Load(EOS(STATIC_1168), i442, i442)
1168_0_main_Load(EOS(STATIC_1168), i442, i442) → 1170_0_main_LE(EOS(STATIC_1170), i442, i442, i442)
1170_0_main_LE(EOS(STATIC_1170), i447, i447, i447) → 1173_0_main_LE(EOS(STATIC_1173), i447, i447, i447)
1173_0_main_LE(EOS(STATIC_1173), i447, i447, i447) → 1177_0_main_Load(EOS(STATIC_1177), i447, i447) | >(i447, 0)
1177_0_main_Load(EOS(STATIC_1177), i447, i447) → 1189_0_main_Load(EOS(STATIC_1189), i447, i447)
1189_0_main_Load(EOS(STATIC_1189), i451, i452) → 1296_0_main_Load(EOS(STATIC_1296), i451, i452)
1296_0_main_Load(EOS(STATIC_1296), i566, i567) → 1298_0_main_LE(EOS(STATIC_1298), i566, i567, i567)
1298_0_main_LE(EOS(STATIC_1298), i566, matching1, matching2) → 1300_0_main_LE(EOS(STATIC_1300), i566, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
1298_0_main_LE(EOS(STATIC_1298), i566, i572, i572) → 1301_0_main_LE(EOS(STATIC_1301), i566, i572, i572)
1300_0_main_LE(EOS(STATIC_1300), i566, matching1, matching2) → 1303_0_main_Load(EOS(STATIC_1303), i566, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
1303_0_main_Load(EOS(STATIC_1303), i566, matching1) → 1158_0_main_Load(EOS(STATIC_1158), i566, 0) | =(matching1, 0)
1158_0_main_Load(EOS(STATIC_1158), i441, i442) → 1160_0_main_Load(EOS(STATIC_1160), i441, i442, i441)
1301_0_main_LE(EOS(STATIC_1301), i566, i572, i572) → 1305_0_main_Inc(EOS(STATIC_1305), i566, i572) | >(i572, 0)
1305_0_main_Inc(EOS(STATIC_1305), i566, i572) → 1453_0_main_Inc(EOS(STATIC_1453), +(i566, -1), i572)
1453_0_main_Inc(EOS(STATIC_1453), i690, i572) → 1454_0_main_JMP(EOS(STATIC_1454), i690, +(i572, -1)) | >(i572, 0)
1454_0_main_JMP(EOS(STATIC_1454), i690, i691) → 1457_0_main_Load(EOS(STATIC_1457), i690, i691)
1457_0_main_Load(EOS(STATIC_1457), i690, i691) → 1296_0_main_Load(EOS(STATIC_1296), i690, i691)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1298_0_main_LE(EOS(STATIC_1298), 0, x0, x1) → 1298_0_main_LE(EOS(STATIC_1298), 0, 0, 0) | FALSE
1298_0_main_LE(EOS(STATIC_1298), x0, x1, x1) → 1298_0_main_LE(EOS(STATIC_1298), +(x0, -1), +(x1, -1), +(x1, -1)) | >(x1, 0)
R rules:
Filtered ground terms:
1298_0_main_LE(x1, x2, x3, x4) → 1298_0_main_LE(x2, x3, x4)
EOS(x1) → EOS
Cond_1298_0_main_LE(x1, x2, x3, x4, x5) → Cond_1298_0_main_LE(x1, x3, x4, x5)
Filtered duplicate args:
1298_0_main_LE(x1, x2, x3) → 1298_0_main_LE(x1, x3)
Cond_1298_0_main_LE(x1, x2, x3, x4) → Cond_1298_0_main_LE(x1, x2, x4)
Filtered unneeded arguments:
Cond_1298_0_main_LE(x1, x2, x3) → Cond_1298_0_main_LE(x1, x3)
1298_0_main_LE(x1, x2) → 1298_0_main_LE(x2)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
1298_0_main_LE(x1) → 1298_0_main_LE(+(x1, -1)) | >(x1, 0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1298_0_MAIN_LE(x1) → COND_1298_0_MAIN_LE(>(x1, 0), x1)
COND_1298_0_MAIN_LE(TRUE, x1) → 1298_0_MAIN_LE(+(x1, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x1[0] > 0 ∧x1[0] →* x1[1])
(1) -> (0), if (x1[1] + -1 →* x1[0])
(1) (>(x1[0], 0)=TRUE∧x1[0]=x1[1] ⇒ 1298_0_MAIN_LE(x1[0])≥NonInfC∧1298_0_MAIN_LE(x1[0])≥COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])∧(UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥))
(2) (>(x1[0], 0)=TRUE ⇒ 1298_0_MAIN_LE(x1[0])≥NonInfC∧1298_0_MAIN_LE(x1[0])≥COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])∧(UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥))
(3) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(4) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(5) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(7) (COND_1298_0_MAIN_LE(TRUE, x1[1])≥NonInfC∧COND_1298_0_MAIN_LE(TRUE, x1[1])≥1298_0_MAIN_LE(+(x1[1], -1))∧(UIncreasing(1298_0_MAIN_LE(+(x1[1], -1))), ≥))
(8) ((UIncreasing(1298_0_MAIN_LE(+(x1[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(9) ((UIncreasing(1298_0_MAIN_LE(+(x1[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(10) ((UIncreasing(1298_0_MAIN_LE(+(x1[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(1298_0_MAIN_LE(+(x1[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1298_0_MAIN_LE(x1)) = [2]x1
POL(COND_1298_0_MAIN_LE(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_1298_0_MAIN_LE(TRUE, x1[1]) → 1298_0_MAIN_LE(+(x1[1], -1))
1298_0_MAIN_LE(x1[0]) → COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])
1298_0_MAIN_LE(x1[0]) → COND_1298_0_MAIN_LE(>(x1[0], 0), x1[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer