0 JBC
↳1 JBCToGraph (⇒, 320 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 140 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 IDPNonInfProof (⇒, 0 ms)
↳13 AND
↳14 IDP
↳15 IDependencyGraphProof (⇔, 0 ms)
↳16 TRUE
↳17 IDP
↳18 IDependencyGraphProof (⇔, 0 ms)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔, 0 ms)
↳22 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB12 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 || y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 20 rules for P and 0 rules for R.
P rules:
297_0_main_GT(EOS(STATIC_297), matching1, i47, matching2) → 303_0_main_GT(EOS(STATIC_303), 0, i47, 0) | &&(=(matching1, 0), =(matching2, 0))
297_0_main_GT(EOS(STATIC_297), i52, i47, i52) → 304_0_main_GT(EOS(STATIC_304), i52, i47, i52)
303_0_main_GT(EOS(STATIC_303), matching1, i47, matching2) → 316_0_main_Load(EOS(STATIC_316), 0, i47) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
316_0_main_Load(EOS(STATIC_316), matching1, i47) → 323_0_main_LE(EOS(STATIC_323), 0, i47, i47) | =(matching1, 0)
323_0_main_LE(EOS(STATIC_323), matching1, i56, i56) → 333_0_main_LE(EOS(STATIC_333), 0, i56, i56) | =(matching1, 0)
333_0_main_LE(EOS(STATIC_333), matching1, i56, i56) → 346_0_main_Load(EOS(STATIC_346), 0, i56) | &&(>(i56, 0), =(matching1, 0))
346_0_main_Load(EOS(STATIC_346), matching1, i56) → 360_0_main_LE(EOS(STATIC_360), 0, i56, 0) | =(matching1, 0)
360_0_main_LE(EOS(STATIC_360), matching1, i56, matching2) → 388_0_main_Load(EOS(STATIC_388), 0, i56) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
388_0_main_Load(EOS(STATIC_388), matching1, i56) → 789_0_main_LE(EOS(STATIC_789), 0, i56, i56) | =(matching1, 0)
789_0_main_LE(EOS(STATIC_789), matching1, i56, i56) → 796_0_main_Inc(EOS(STATIC_796), 0, i56) | &&(>(i56, 0), =(matching1, 0))
796_0_main_Inc(EOS(STATIC_796), matching1, i56) → 802_0_main_JMP(EOS(STATIC_802), 0, +(i56, -1)) | &&(>(i56, 0), =(matching1, 0))
802_0_main_JMP(EOS(STATIC_802), matching1, i150) → 809_0_main_Load(EOS(STATIC_809), 0, i150) | =(matching1, 0)
809_0_main_Load(EOS(STATIC_809), matching1, i150) → 292_0_main_Load(EOS(STATIC_292), 0, i150) | =(matching1, 0)
292_0_main_Load(EOS(STATIC_292), i18, i47) → 297_0_main_GT(EOS(STATIC_297), i18, i47, i18)
304_0_main_GT(EOS(STATIC_304), i52, i47, i52) → 317_0_main_Load(EOS(STATIC_317), i52, i47) | >(i52, 0)
317_0_main_Load(EOS(STATIC_317), i52, i47) → 326_0_main_LE(EOS(STATIC_326), i52, i47, i52)
326_0_main_LE(EOS(STATIC_326), i52, i47, i52) → 335_0_main_Inc(EOS(STATIC_335), i52, i47) | >(i52, 0)
335_0_main_Inc(EOS(STATIC_335), i52, i47) → 348_0_main_JMP(EOS(STATIC_348), +(i52, -1), i47) | >(i52, 0)
348_0_main_JMP(EOS(STATIC_348), i58, i47) → 380_0_main_Load(EOS(STATIC_380), i58, i47)
380_0_main_Load(EOS(STATIC_380), i58, i47) → 292_0_main_Load(EOS(STATIC_292), i58, i47)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
297_0_main_GT(EOS(STATIC_297), 0, x1, 0) → 297_0_main_GT(EOS(STATIC_297), 0, +(x1, -1), 0) | >(x1, 0)
297_0_main_GT(EOS(STATIC_297), x0, x1, x0) → 297_0_main_GT(EOS(STATIC_297), +(x0, -1), x1, +(x0, -1)) | >(x0, 0)
R rules:
Filtered ground terms:
297_0_main_GT(x1, x2, x3, x4) → 297_0_main_GT(x2, x3, x4)
EOS(x1) → EOS
Cond_297_0_main_GT1(x1, x2, x3, x4, x5) → Cond_297_0_main_GT1(x1, x3, x4, x5)
Cond_297_0_main_GT(x1, x2, x3, x4, x5) → Cond_297_0_main_GT(x1, x4)
Filtered duplicate args:
297_0_main_GT(x1, x2, x3) → 297_0_main_GT(x2, x3)
Cond_297_0_main_GT1(x1, x2, x3, x4) → Cond_297_0_main_GT1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
297_0_main_GT(x1, 0) → 297_0_main_GT(+(x1, -1), 0) | >(x1, 0)
297_0_main_GT(x1, x0) → 297_0_main_GT(x1, +(x0, -1)) | >(x0, 0)
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
297_0_MAIN_GT(x1, 0) → COND_297_0_MAIN_GT(>(x1, 0), x1, 0)
COND_297_0_MAIN_GT(TRUE, x1, 0) → 297_0_MAIN_GT(+(x1, -1), 0)
297_0_MAIN_GT(x1, x0) → COND_297_0_MAIN_GT1(>(x0, 0), x1, x0)
COND_297_0_MAIN_GT1(TRUE, x1, x0) → 297_0_MAIN_GT(x1, +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x1[0] > 0 ∧x1[0] →* x1[1])
(1) -> (0), if x1[1] + -1 →* x1[0]
(1) -> (2), if (x1[1] + -1 →* x1[2]∧0 →* x0[2])
(2) -> (3), if (x0[2] > 0 ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] →* x1[0]∧x0[3] + -1 →* 0)
(3) -> (2), if (x1[3] →* x1[2]∧x0[3] + -1 →* x0[2])
(1) (>(x1[0], 0)=TRUE∧x1[0]=x1[1] ⇒ 297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))
(2) (>(x1[0], 0)=TRUE ⇒ 297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))
(3) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥NonInfC∧COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥297_0_MAIN_GT(+(x1[1], -1), 0)∧(UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥))
(8) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)
(9) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)
(10) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)
(11) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧0 = 0∧[(-1)bso_13] ≥ 0)
(12) (>(x0[2], 0)=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 297_0_MAIN_GT(x1[2], x0[2])≥NonInfC∧297_0_MAIN_GT(x1[2], x0[2])≥COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])∧(UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥))
(13) (>(x0[2], 0)=TRUE ⇒ 297_0_MAIN_GT(x1[2], x0[2])≥NonInfC∧297_0_MAIN_GT(x1[2], x0[2])≥COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])∧(UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥))
(14) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(15) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(16) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(17) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧0 = 0∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(18) (x0[2] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧0 = 0∧[(-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(19) (COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3])≥297_0_MAIN_GT(x1[3], +(x0[3], -1))∧(UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥))
(20) ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(21) ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(22) ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(23) ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(297_0_MAIN_GT(x1, x2)) = [-1] + x2
POL(0) = 0
POL(COND_297_0_MAIN_GT(x1, x2, x3)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_297_0_MAIN_GT1(x1, x2, x3)) = [-1] + x3
COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], +(x0[3], -1))
297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])
297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0)
297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if x1[1] + -1 →* x1[0]
(0) -> (1), if (x1[0] > 0 ∧x1[0] →* x1[1])
(1) -> (2), if (x1[1] + -1 →* x1[2]∧0 →* x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if x1[1] + -1 →* x1[0]
(0) -> (1), if (x1[0] > 0 ∧x1[0] →* x1[1])
(1) (COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥NonInfC∧COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥297_0_MAIN_GT(+(x1[1], -1), 0)∧(UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥))
(2) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)
(3) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)
(4) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)
(5) ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧0 = 0∧[2 + (-1)bso_7] ≥ 0)
(6) (>(x1[0], 0)=TRUE∧x1[0]=x1[1] ⇒ 297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))
(7) (>(x1[0], 0)=TRUE ⇒ 297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))
(8) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(9) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(10) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(11) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_297_0_MAIN_GT(x1, x2, x3)) = [-1] + [2]x2
POL(0) = 0
POL(297_0_MAIN_GT(x1, x2)) = [-1] + [2]x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [2]
COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0)
297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer