(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB12
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB12 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x > 0 || y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaB12.main([Ljava/lang/String;)V: Graph of 186 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaB12.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 20 rules for P and 0 rules for R.


P rules:
297_0_main_GT(EOS(STATIC_297), matching1, i47, matching2) → 303_0_main_GT(EOS(STATIC_303), 0, i47, 0) | &&(=(matching1, 0), =(matching2, 0))
297_0_main_GT(EOS(STATIC_297), i52, i47, i52) → 304_0_main_GT(EOS(STATIC_304), i52, i47, i52)
303_0_main_GT(EOS(STATIC_303), matching1, i47, matching2) → 316_0_main_Load(EOS(STATIC_316), 0, i47) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
316_0_main_Load(EOS(STATIC_316), matching1, i47) → 323_0_main_LE(EOS(STATIC_323), 0, i47, i47) | =(matching1, 0)
323_0_main_LE(EOS(STATIC_323), matching1, i56, i56) → 333_0_main_LE(EOS(STATIC_333), 0, i56, i56) | =(matching1, 0)
333_0_main_LE(EOS(STATIC_333), matching1, i56, i56) → 346_0_main_Load(EOS(STATIC_346), 0, i56) | &&(>(i56, 0), =(matching1, 0))
346_0_main_Load(EOS(STATIC_346), matching1, i56) → 360_0_main_LE(EOS(STATIC_360), 0, i56, 0) | =(matching1, 0)
360_0_main_LE(EOS(STATIC_360), matching1, i56, matching2) → 388_0_main_Load(EOS(STATIC_388), 0, i56) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
388_0_main_Load(EOS(STATIC_388), matching1, i56) → 789_0_main_LE(EOS(STATIC_789), 0, i56, i56) | =(matching1, 0)
789_0_main_LE(EOS(STATIC_789), matching1, i56, i56) → 796_0_main_Inc(EOS(STATIC_796), 0, i56) | &&(>(i56, 0), =(matching1, 0))
796_0_main_Inc(EOS(STATIC_796), matching1, i56) → 802_0_main_JMP(EOS(STATIC_802), 0, +(i56, -1)) | &&(>(i56, 0), =(matching1, 0))
802_0_main_JMP(EOS(STATIC_802), matching1, i150) → 809_0_main_Load(EOS(STATIC_809), 0, i150) | =(matching1, 0)
809_0_main_Load(EOS(STATIC_809), matching1, i150) → 292_0_main_Load(EOS(STATIC_292), 0, i150) | =(matching1, 0)
292_0_main_Load(EOS(STATIC_292), i18, i47) → 297_0_main_GT(EOS(STATIC_297), i18, i47, i18)
304_0_main_GT(EOS(STATIC_304), i52, i47, i52) → 317_0_main_Load(EOS(STATIC_317), i52, i47) | >(i52, 0)
317_0_main_Load(EOS(STATIC_317), i52, i47) → 326_0_main_LE(EOS(STATIC_326), i52, i47, i52)
326_0_main_LE(EOS(STATIC_326), i52, i47, i52) → 335_0_main_Inc(EOS(STATIC_335), i52, i47) | >(i52, 0)
335_0_main_Inc(EOS(STATIC_335), i52, i47) → 348_0_main_JMP(EOS(STATIC_348), +(i52, -1), i47) | >(i52, 0)
348_0_main_JMP(EOS(STATIC_348), i58, i47) → 380_0_main_Load(EOS(STATIC_380), i58, i47)
380_0_main_Load(EOS(STATIC_380), i58, i47) → 292_0_main_Load(EOS(STATIC_292), i58, i47)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
297_0_main_GT(EOS(STATIC_297), 0, x1, 0) → 297_0_main_GT(EOS(STATIC_297), 0, +(x1, -1), 0) | >(x1, 0)
297_0_main_GT(EOS(STATIC_297), x0, x1, x0) → 297_0_main_GT(EOS(STATIC_297), +(x0, -1), x1, +(x0, -1)) | >(x0, 0)
R rules:

Filtered ground terms:



297_0_main_GT(x1, x2, x3, x4) → 297_0_main_GT(x2, x3, x4)
EOS(x1) → EOS
Cond_297_0_main_GT1(x1, x2, x3, x4, x5) → Cond_297_0_main_GT1(x1, x3, x4, x5)
Cond_297_0_main_GT(x1, x2, x3, x4, x5) → Cond_297_0_main_GT(x1, x4)

Filtered duplicate args:



297_0_main_GT(x1, x2, x3) → 297_0_main_GT(x2, x3)
Cond_297_0_main_GT1(x1, x2, x3, x4) → Cond_297_0_main_GT1(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
297_0_main_GT(x1, 0) → 297_0_main_GT(+(x1, -1), 0) | >(x1, 0)
297_0_main_GT(x1, x0) → 297_0_main_GT(x1, +(x0, -1)) | >(x0, 0)
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
297_0_MAIN_GT(x1, 0) → COND_297_0_MAIN_GT(>(x1, 0), x1, 0)
COND_297_0_MAIN_GT(TRUE, x1, 0) → 297_0_MAIN_GT(+(x1, -1), 0)
297_0_MAIN_GT(x1, x0) → COND_297_0_MAIN_GT1(>(x0, 0), x1, x0)
COND_297_0_MAIN_GT1(TRUE, x1, x0) → 297_0_MAIN_GT(x1, +(x0, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(x1[0] > 0, x1[0], 0)
(1): COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(x1[1] + -1, 0)
(2): 297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(x0[2] > 0, x1[2], x0[2])
(3): COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], x0[3] + -1)

(0) -> (1), if (x1[0] > 0x1[0]* x1[1])


(1) -> (0), if x1[1] + -1* x1[0]


(1) -> (2), if (x1[1] + -1* x1[2]0* x0[2])


(2) -> (3), if (x0[2] > 0x1[2]* x1[3]x0[2]* x0[3])


(3) -> (0), if (x1[3]* x1[0]x0[3] + -1* 0)


(3) -> (2), if (x1[3]* x1[2]x0[3] + -1* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@2784bc9b Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 297_0_MAIN_GT(x1, 0) → COND_297_0_MAIN_GT(>(x1, 0), x1, 0) the following chains were created:
  • We consider the chain 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0), COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0) which results in the following constraint:

    (1)    (>(x1[0], 0)=TRUEx1[0]=x1[1]297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x1[0], 0)=TRUE297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_297_0_MAIN_GT(TRUE, x1, 0) → 297_0_MAIN_GT(+(x1, -1), 0) the following chains were created:
  • We consider the chain COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0) which results in the following constraint:

    (7)    (COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥NonInfC∧COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥297_0_MAIN_GT(+(x1[1], -1), 0)∧(UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧0 = 0∧[(-1)bso_13] ≥ 0)







For Pair 297_0_MAIN_GT(x1, x0) → COND_297_0_MAIN_GT1(>(x0, 0), x1, x0) the following chains were created:
  • We consider the chain 297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2]), COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], +(x0[3], -1)) which results in the following constraint:

    (12)    (>(x0[2], 0)=TRUEx1[2]=x1[3]x0[2]=x0[3]297_0_MAIN_GT(x1[2], x0[2])≥NonInfC∧297_0_MAIN_GT(x1[2], x0[2])≥COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])∧(UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥))



    We simplified constraint (12) using rule (IV) which results in the following new constraint:

    (13)    (>(x0[2], 0)=TRUE297_0_MAIN_GT(x1[2], x0[2])≥NonInfC∧297_0_MAIN_GT(x1[2], x0[2])≥COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])∧(UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧0 = 0∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x0[2] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧0 = 0∧[(-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair COND_297_0_MAIN_GT1(TRUE, x1, x0) → 297_0_MAIN_GT(x1, +(x0, -1)) the following chains were created:
  • We consider the chain COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], +(x0[3], -1)) which results in the following constraint:

    (19)    (COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3])≥297_0_MAIN_GT(x1[3], +(x0[3], -1))∧(UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥))



    We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (20)    ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (21)    ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (22) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (23)    ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 297_0_MAIN_GT(x1, 0) → COND_297_0_MAIN_GT(>(x1, 0), x1, 0)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_297_0_MAIN_GT(TRUE, x1, 0) → 297_0_MAIN_GT(+(x1, -1), 0)
    • ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_12] = 0∧0 = 0∧[(-1)bso_13] ≥ 0)

  • 297_0_MAIN_GT(x1, x0) → COND_297_0_MAIN_GT1(>(x0, 0), x1, x0)
    • (x0[2] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])), ≥)∧0 = 0∧[(-1)Bound*bni_14] + [bni_14]x0[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

  • COND_297_0_MAIN_GT1(TRUE, x1, x0) → 297_0_MAIN_GT(x1, +(x0, -1))
    • ((UIncreasing(297_0_MAIN_GT(x1[3], +(x0[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(297_0_MAIN_GT(x1, x2)) = [-1] + x2   
POL(0) = 0   
POL(COND_297_0_MAIN_GT(x1, x2, x3)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_297_0_MAIN_GT1(x1, x2, x3)) = [-1] + x3   

The following pairs are in P>:

COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], +(x0[3], -1))

The following pairs are in Pbound:

297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])

The following pairs are in P:

297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0)
297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(>(x0[2], 0), x1[2], x0[2])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(x1[0] > 0, x1[0], 0)
(1): COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(x1[1] + -1, 0)
(2): 297_0_MAIN_GT(x1[2], x0[2]) → COND_297_0_MAIN_GT1(x0[2] > 0, x1[2], x0[2])

(1) -> (0), if x1[1] + -1* x1[0]


(0) -> (1), if (x1[0] > 0x1[0]* x1[1])


(1) -> (2), if (x1[1] + -1* x1[2]0* x0[2])



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(x1[1] + -1, 0)
(0): 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(x1[0] > 0, x1[0], 0)

(1) -> (0), if x1[1] + -1* x1[0]


(0) -> (1), if (x1[0] > 0x1[0]* x1[1])



The set Q is empty.

(12) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@2784bc9b Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0) the following chains were created:
  • We consider the chain COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0) which results in the following constraint:

    (1)    (COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥NonInfC∧COND_297_0_MAIN_GT(TRUE, x1[1], 0)≥297_0_MAIN_GT(+(x1[1], -1), 0)∧(UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧[2 + (-1)bso_7] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧0 = 0∧[2 + (-1)bso_7] ≥ 0)







For Pair 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0) the following chains were created:
  • We consider the chain 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0), COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0) which results in the following constraint:

    (6)    (>(x1[0], 0)=TRUEx1[0]=x1[1]297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (6) using rule (IV) which results in the following new constraint:

    (7)    (>(x1[0], 0)=TRUE297_0_MAIN_GT(x1[0], 0)≥NonInfC∧297_0_MAIN_GT(x1[0], 0)≥COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0)
    • ((UIncreasing(297_0_MAIN_GT(+(x1[1], -1), 0)), ≥)∧[bni_6] = 0∧0 = 0∧[2 + (-1)bso_7] ≥ 0)

  • 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_297_0_MAIN_GT(x1, x2, x3)) = [-1] + [2]x2   
POL(0) = 0   
POL(297_0_MAIN_GT(x1, x2)) = [-1] + [2]x1   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(>(x1, x2)) = [2]   

The following pairs are in P>:

COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(+(x1[1], -1), 0)

The following pairs are in Pbound:

297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)

The following pairs are in P:

297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(>(x1[0], 0), x1[0], 0)

There are no usable rules.

(13) Complex Obligation (AND)

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 297_0_MAIN_GT(x1[0], 0) → COND_297_0_MAIN_GT(x1[0] > 0, x1[0], 0)


The set Q is empty.

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(x1[1] + -1, 0)


The set Q is empty.

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_297_0_MAIN_GT(TRUE, x1[1], 0) → 297_0_MAIN_GT(x1[1] + -1, 0)
(3): COND_297_0_MAIN_GT1(TRUE, x1[3], x0[3]) → 297_0_MAIN_GT(x1[3], x0[3] + -1)


The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(22) TRUE