(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB10
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x + y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaB10.main([Ljava/lang/String;)V: Graph of 187 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaB10.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 22 rules for P and 0 rules for R.


P rules:
280_0_main_Load(EOS(STATIC_280), i18, i46, i18) → 282_0_main_IntArithmetic(EOS(STATIC_282), i18, i46, i18, i46)
282_0_main_IntArithmetic(EOS(STATIC_282), i18, i46, i18, i46) → 292_0_main_LE(EOS(STATIC_292), i18, i46, +(i18, i46)) | &&(>=(i18, 0), >=(i46, 0))
292_0_main_LE(EOS(STATIC_292), i18, i46, i52) → 301_0_main_LE(EOS(STATIC_301), i18, i46, i52)
301_0_main_LE(EOS(STATIC_301), i18, i46, i52) → 309_0_main_Load(EOS(STATIC_309), i18, i46) | >(i52, 0)
309_0_main_Load(EOS(STATIC_309), i18, i46) → 319_0_main_LE(EOS(STATIC_319), i18, i46, i18)
319_0_main_LE(EOS(STATIC_319), matching1, i46, matching2) → 324_0_main_LE(EOS(STATIC_324), 0, i46, 0) | &&(=(matching1, 0), =(matching2, 0))
319_0_main_LE(EOS(STATIC_319), i56, i46, i56) → 325_0_main_LE(EOS(STATIC_325), i56, i46, i56)
324_0_main_LE(EOS(STATIC_324), matching1, i46, matching2) → 334_0_main_Load(EOS(STATIC_334), 0, i46) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
334_0_main_Load(EOS(STATIC_334), matching1, i46) → 344_0_main_LE(EOS(STATIC_344), 0, i46, i46) | =(matching1, 0)
344_0_main_LE(EOS(STATIC_344), matching1, matching2, matching3) → 358_0_main_LE(EOS(STATIC_358), 0, 0, 0) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 0))
344_0_main_LE(EOS(STATIC_344), matching1, i63, i63) → 360_0_main_LE(EOS(STATIC_360), 0, i63, i63) | =(matching1, 0)
358_0_main_LE(EOS(STATIC_358), matching1, matching2, matching3) → 379_0_main_Load(EOS(STATIC_379), 0, 0) | &&(&&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0)), =(matching3, 0))
379_0_main_Load(EOS(STATIC_379), matching1, matching2) → 276_0_main_Load(EOS(STATIC_276), 0, 0) | &&(=(matching1, 0), =(matching2, 0))
276_0_main_Load(EOS(STATIC_276), i18, i46) → 280_0_main_Load(EOS(STATIC_280), i18, i46, i18)
360_0_main_LE(EOS(STATIC_360), matching1, i63, i63) → 382_0_main_Inc(EOS(STATIC_382), 0, i63) | &&(>(i63, 0), =(matching1, 0))
382_0_main_Inc(EOS(STATIC_382), matching1, i63) → 391_0_main_JMP(EOS(STATIC_391), 0, +(i63, -1)) | &&(>(i63, 0), =(matching1, 0))
391_0_main_JMP(EOS(STATIC_391), matching1, i69) → 400_0_main_Load(EOS(STATIC_400), 0, i69) | =(matching1, 0)
400_0_main_Load(EOS(STATIC_400), matching1, i69) → 276_0_main_Load(EOS(STATIC_276), 0, i69) | =(matching1, 0)
325_0_main_LE(EOS(STATIC_325), i56, i46, i56) → 336_0_main_Inc(EOS(STATIC_336), i56, i46) | >(i56, 0)
336_0_main_Inc(EOS(STATIC_336), i56, i46) → 346_0_main_JMP(EOS(STATIC_346), +(i56, -1), i46) | >(i56, 0)
346_0_main_JMP(EOS(STATIC_346), i60, i46) → 367_0_main_Load(EOS(STATIC_367), i60, i46)
367_0_main_Load(EOS(STATIC_367), i60, i46) → 276_0_main_Load(EOS(STATIC_276), i60, i46)
R rules:

Combined rules. Obtained 3 conditional rules for P and 0 conditional rules for R.


P rules:
280_0_main_Load(EOS(STATIC_280), x0, x1, x0) → 280_0_main_Load(EOS(STATIC_280), 0, 0, 0) | FALSE
280_0_main_Load(EOS(STATIC_280), 0, x1, 0) → 280_0_main_Load(EOS(STATIC_280), 0, +(x1, -1), 0) | >(x1, 0)
280_0_main_Load(EOS(STATIC_280), x0, x1, x0) → 280_0_main_Load(EOS(STATIC_280), +(x0, -1), x1, +(x0, -1)) | &&(&&(>(+(x1, 1), 0), >(x0, 0)), <(0, +(x0, x1)))
R rules:

Filtered ground terms:



280_0_main_Load(x1, x2, x3, x4) → 280_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_280_0_main_Load1(x1, x2, x3, x4, x5) → Cond_280_0_main_Load1(x1, x3, x4, x5)
Cond_280_0_main_Load(x1, x2, x3, x4, x5) → Cond_280_0_main_Load(x1, x4)

Filtered duplicate args:



280_0_main_Load(x1, x2, x3) → 280_0_main_Load(x2, x3)
Cond_280_0_main_Load1(x1, x2, x3, x4) → Cond_280_0_main_Load1(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
280_0_main_Load(x1, 0) → 280_0_main_Load(+(x1, -1), 0) | >(x1, 0)
280_0_main_Load(x1, x0) → 280_0_main_Load(x1, +(x0, -1)) | &&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1)))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
280_0_MAIN_LOAD(x1, 0) → COND_280_0_MAIN_LOAD(>(x1, 0), x1, 0)
COND_280_0_MAIN_LOAD(TRUE, x1, 0) → 280_0_MAIN_LOAD(+(x1, -1), 0)
280_0_MAIN_LOAD(x1, x0) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1))), x1, x0)
COND_280_0_MAIN_LOAD1(TRUE, x1, x0) → 280_0_MAIN_LOAD(x1, +(x0, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(x1[0] > 0, x1[0], 0)
(1): COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(x1[1] + -1, 0)
(2): 280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(x1[2] > -1 && x0[2] > 0 && 0 < x0[2] + x1[2], x1[2], x0[2])
(3): COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], x0[3] + -1)

(0) -> (1), if (x1[0] > 0x1[0]* x1[1])


(1) -> (0), if x1[1] + -1* x1[0]


(1) -> (2), if (x1[1] + -1* x1[2]0* x0[2])


(2) -> (3), if (x1[2] > -1 && x0[2] > 0 && 0 < x0[2] + x1[2]x1[2]* x1[3]x0[2]* x0[3])


(3) -> (0), if (x1[3]* x1[0]x0[3] + -1* 0)


(3) -> (2), if (x1[3]* x1[2]x0[3] + -1* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@3162a60a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 280_0_MAIN_LOAD(x1, 0) → COND_280_0_MAIN_LOAD(>(x1, 0), x1, 0) the following chains were created:
  • We consider the chain 280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0), COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(+(x1[1], -1), 0) which results in the following constraint:

    (1)    (>(x1[0], 0)=TRUEx1[0]=x1[1]280_0_MAIN_LOAD(x1[0], 0)≥NonInfC∧280_0_MAIN_LOAD(x1[0], 0)≥COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x1[0], 0)=TRUE280_0_MAIN_LOAD(x1[0], 0)≥NonInfC∧280_0_MAIN_LOAD(x1[0], 0)≥COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_280_0_MAIN_LOAD(TRUE, x1, 0) → 280_0_MAIN_LOAD(+(x1, -1), 0) the following chains were created:
  • We consider the chain COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(+(x1[1], -1), 0) which results in the following constraint:

    (7)    (COND_280_0_MAIN_LOAD(TRUE, x1[1], 0)≥NonInfC∧COND_280_0_MAIN_LOAD(TRUE, x1[1], 0)≥280_0_MAIN_LOAD(+(x1[1], -1), 0)∧(UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)







For Pair 280_0_MAIN_LOAD(x1, x0) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1))), x1, x0) the following chains were created:
  • We consider the chain 280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2]), COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], +(x0[3], -1)) which results in the following constraint:

    (12)    (&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2])))=TRUEx1[2]=x1[3]x0[2]=x0[3]280_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧280_0_MAIN_LOAD(x1[2], x0[2])≥COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])∧(UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥))



    We simplified constraint (12) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (13)    (<(0, +(x0[2], x1[2]))=TRUE>(x1[2], -1)=TRUE>(x0[2], 0)=TRUE280_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧280_0_MAIN_LOAD(x1[2], x0[2])≥COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])∧(UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (x0[2] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_280_0_MAIN_LOAD1(TRUE, x1, x0) → 280_0_MAIN_LOAD(x1, +(x0, -1)) the following chains were created:
  • We consider the chain COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], +(x0[3], -1)) which results in the following constraint:

    (18)    (COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥280_0_MAIN_LOAD(x1[3], +(x0[3], -1))∧(UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 280_0_MAIN_LOAD(x1, 0) → COND_280_0_MAIN_LOAD(>(x1, 0), x1, 0)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_280_0_MAIN_LOAD(TRUE, x1, 0) → 280_0_MAIN_LOAD(+(x1, -1), 0)
    • ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)

  • 280_0_MAIN_LOAD(x1, x0) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1))), x1, x0)
    • (x0[2] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_280_0_MAIN_LOAD1(TRUE, x1, x0) → 280_0_MAIN_LOAD(x1, +(x0, -1))
    • ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(280_0_MAIN_LOAD(x1, x2)) = [1] + x2 + x1   
POL(0) = 0   
POL(COND_280_0_MAIN_LOAD(x1, x2, x3)) = [1] + x2   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_280_0_MAIN_LOAD1(x1, x2, x3)) = [1] + x3 + x2   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(+(x1[1], -1), 0)
COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], +(x0[3], -1))

The following pairs are in Pbound:

280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)
280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])

The following pairs are in P:

280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)
280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(x1[0] > 0, x1[0], 0)
(2): 280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(x1[2] > -1 && x0[2] > 0 && 0 < x0[2] + x1[2], x1[2], x0[2])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(x1[1] + -1, 0)
(3): COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], x0[3] + -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE