0 JBC
↳1 JBCToGraph (⇒, 120 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 250 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x + y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 22 rules for P and 0 rules for R.
P rules:
280_0_main_Load(EOS(STATIC_280), i18, i46, i18) → 282_0_main_IntArithmetic(EOS(STATIC_282), i18, i46, i18, i46)
282_0_main_IntArithmetic(EOS(STATIC_282), i18, i46, i18, i46) → 292_0_main_LE(EOS(STATIC_292), i18, i46, +(i18, i46)) | &&(>=(i18, 0), >=(i46, 0))
292_0_main_LE(EOS(STATIC_292), i18, i46, i52) → 301_0_main_LE(EOS(STATIC_301), i18, i46, i52)
301_0_main_LE(EOS(STATIC_301), i18, i46, i52) → 309_0_main_Load(EOS(STATIC_309), i18, i46) | >(i52, 0)
309_0_main_Load(EOS(STATIC_309), i18, i46) → 319_0_main_LE(EOS(STATIC_319), i18, i46, i18)
319_0_main_LE(EOS(STATIC_319), matching1, i46, matching2) → 324_0_main_LE(EOS(STATIC_324), 0, i46, 0) | &&(=(matching1, 0), =(matching2, 0))
319_0_main_LE(EOS(STATIC_319), i56, i46, i56) → 325_0_main_LE(EOS(STATIC_325), i56, i46, i56)
324_0_main_LE(EOS(STATIC_324), matching1, i46, matching2) → 334_0_main_Load(EOS(STATIC_334), 0, i46) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
334_0_main_Load(EOS(STATIC_334), matching1, i46) → 344_0_main_LE(EOS(STATIC_344), 0, i46, i46) | =(matching1, 0)
344_0_main_LE(EOS(STATIC_344), matching1, matching2, matching3) → 358_0_main_LE(EOS(STATIC_358), 0, 0, 0) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 0))
344_0_main_LE(EOS(STATIC_344), matching1, i63, i63) → 360_0_main_LE(EOS(STATIC_360), 0, i63, i63) | =(matching1, 0)
358_0_main_LE(EOS(STATIC_358), matching1, matching2, matching3) → 379_0_main_Load(EOS(STATIC_379), 0, 0) | &&(&&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0)), =(matching3, 0))
379_0_main_Load(EOS(STATIC_379), matching1, matching2) → 276_0_main_Load(EOS(STATIC_276), 0, 0) | &&(=(matching1, 0), =(matching2, 0))
276_0_main_Load(EOS(STATIC_276), i18, i46) → 280_0_main_Load(EOS(STATIC_280), i18, i46, i18)
360_0_main_LE(EOS(STATIC_360), matching1, i63, i63) → 382_0_main_Inc(EOS(STATIC_382), 0, i63) | &&(>(i63, 0), =(matching1, 0))
382_0_main_Inc(EOS(STATIC_382), matching1, i63) → 391_0_main_JMP(EOS(STATIC_391), 0, +(i63, -1)) | &&(>(i63, 0), =(matching1, 0))
391_0_main_JMP(EOS(STATIC_391), matching1, i69) → 400_0_main_Load(EOS(STATIC_400), 0, i69) | =(matching1, 0)
400_0_main_Load(EOS(STATIC_400), matching1, i69) → 276_0_main_Load(EOS(STATIC_276), 0, i69) | =(matching1, 0)
325_0_main_LE(EOS(STATIC_325), i56, i46, i56) → 336_0_main_Inc(EOS(STATIC_336), i56, i46) | >(i56, 0)
336_0_main_Inc(EOS(STATIC_336), i56, i46) → 346_0_main_JMP(EOS(STATIC_346), +(i56, -1), i46) | >(i56, 0)
346_0_main_JMP(EOS(STATIC_346), i60, i46) → 367_0_main_Load(EOS(STATIC_367), i60, i46)
367_0_main_Load(EOS(STATIC_367), i60, i46) → 276_0_main_Load(EOS(STATIC_276), i60, i46)
R rules:
Combined rules. Obtained 3 conditional rules for P and 0 conditional rules for R.
P rules:
280_0_main_Load(EOS(STATIC_280), x0, x1, x0) → 280_0_main_Load(EOS(STATIC_280), 0, 0, 0) | FALSE
280_0_main_Load(EOS(STATIC_280), 0, x1, 0) → 280_0_main_Load(EOS(STATIC_280), 0, +(x1, -1), 0) | >(x1, 0)
280_0_main_Load(EOS(STATIC_280), x0, x1, x0) → 280_0_main_Load(EOS(STATIC_280), +(x0, -1), x1, +(x0, -1)) | &&(&&(>(+(x1, 1), 0), >(x0, 0)), <(0, +(x0, x1)))
R rules:
Filtered ground terms:
280_0_main_Load(x1, x2, x3, x4) → 280_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_280_0_main_Load1(x1, x2, x3, x4, x5) → Cond_280_0_main_Load1(x1, x3, x4, x5)
Cond_280_0_main_Load(x1, x2, x3, x4, x5) → Cond_280_0_main_Load(x1, x4)
Filtered duplicate args:
280_0_main_Load(x1, x2, x3) → 280_0_main_Load(x2, x3)
Cond_280_0_main_Load1(x1, x2, x3, x4) → Cond_280_0_main_Load1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
280_0_main_Load(x1, 0) → 280_0_main_Load(+(x1, -1), 0) | >(x1, 0)
280_0_main_Load(x1, x0) → 280_0_main_Load(x1, +(x0, -1)) | &&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1)))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
280_0_MAIN_LOAD(x1, 0) → COND_280_0_MAIN_LOAD(>(x1, 0), x1, 0)
COND_280_0_MAIN_LOAD(TRUE, x1, 0) → 280_0_MAIN_LOAD(+(x1, -1), 0)
280_0_MAIN_LOAD(x1, x0) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1, -1), >(x0, 0)), <(0, +(x0, x1))), x1, x0)
COND_280_0_MAIN_LOAD1(TRUE, x1, x0) → 280_0_MAIN_LOAD(x1, +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x1[0] > 0 ∧x1[0] →* x1[1])
(1) -> (0), if x1[1] + -1 →* x1[0]
(1) -> (2), if (x1[1] + -1 →* x1[2]∧0 →* x0[2])
(2) -> (3), if (x1[2] > -1 && x0[2] > 0 && 0 < x0[2] + x1[2] ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] →* x1[0]∧x0[3] + -1 →* 0)
(3) -> (2), if (x1[3] →* x1[2]∧x0[3] + -1 →* x0[2])
(1) (>(x1[0], 0)=TRUE∧x1[0]=x1[1] ⇒ 280_0_MAIN_LOAD(x1[0], 0)≥NonInfC∧280_0_MAIN_LOAD(x1[0], 0)≥COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥))
(2) (>(x1[0], 0)=TRUE ⇒ 280_0_MAIN_LOAD(x1[0], 0)≥NonInfC∧280_0_MAIN_LOAD(x1[0], 0)≥COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)∧(UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥))
(3) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (COND_280_0_MAIN_LOAD(TRUE, x1[1], 0)≥NonInfC∧COND_280_0_MAIN_LOAD(TRUE, x1[1], 0)≥280_0_MAIN_LOAD(+(x1[1], -1), 0)∧(UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥))
(8) ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(9) ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(280_0_MAIN_LOAD(+(x1[1], -1), 0)), ≥)∧[bni_14] = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(12) (&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2])))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 280_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧280_0_MAIN_LOAD(x1[2], x0[2])≥COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])∧(UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥))
(13) (<(0, +(x0[2], x1[2]))=TRUE∧>(x1[2], -1)=TRUE∧>(x0[2], 0)=TRUE ⇒ 280_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧280_0_MAIN_LOAD(x1[2], x0[2])≥COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])∧(UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥))
(14) (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(15) (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(16) (x0[2] + [-1] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(17) (x0[2] + x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥280_0_MAIN_LOAD(x1[3], +(x0[3], -1))∧(UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥))
(19) ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(20) ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(21) ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(22) ((UIncreasing(280_0_MAIN_LOAD(x1[3], +(x0[3], -1))), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(280_0_MAIN_LOAD(x1, x2)) = [1] + x2 + x1
POL(0) = 0
POL(COND_280_0_MAIN_LOAD(x1, x2, x3)) = [1] + x2
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_280_0_MAIN_LOAD1(x1, x2, x3)) = [1] + x3 + x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
COND_280_0_MAIN_LOAD(TRUE, x1[1], 0) → 280_0_MAIN_LOAD(+(x1[1], -1), 0)
COND_280_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 280_0_MAIN_LOAD(x1[3], +(x0[3], -1))
280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)
280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])
280_0_MAIN_LOAD(x1[0], 0) → COND_280_0_MAIN_LOAD(>(x1[0], 0), x1[0], 0)
280_0_MAIN_LOAD(x1[2], x0[2]) → COND_280_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), >(x0[2], 0)), <(0, +(x0[2], x1[2]))), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer