0 JBC
↳1 JBCToGraph (⇒, 360 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 50 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 190 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA9 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
if (y > 0) {
while (x >= z) {
z += y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 0 rules for R.
P rules:
540_0_main_Load(EOS(STATIC_540), i18, i94, i88, i18) → 548_0_main_LT(EOS(STATIC_548), i18, i94, i88, i18, i88)
548_0_main_LT(EOS(STATIC_548), i18, i94, i88, i18, i88) → 559_0_main_LT(EOS(STATIC_559), i18, i94, i88, i18, i88)
559_0_main_LT(EOS(STATIC_559), i18, i94, i88, i18, i88) → 579_0_main_Load(EOS(STATIC_579), i18, i94, i88) | >=(i18, i88)
579_0_main_Load(EOS(STATIC_579), i18, i94, i88) → 590_0_main_Load(EOS(STATIC_590), i18, i94, i88)
590_0_main_Load(EOS(STATIC_590), i18, i94, i88) → 600_0_main_IntArithmetic(EOS(STATIC_600), i18, i94, i88, i94)
600_0_main_IntArithmetic(EOS(STATIC_600), i18, i94, i88, i94) → 613_0_main_Store(EOS(STATIC_613), i18, i94, +(i88, i94)) | &&(>=(i88, 0), >(i94, 0))
613_0_main_Store(EOS(STATIC_613), i18, i94, i101) → 623_0_main_JMP(EOS(STATIC_623), i18, i94, i101)
623_0_main_JMP(EOS(STATIC_623), i18, i94, i101) → 648_0_main_Load(EOS(STATIC_648), i18, i94, i101)
648_0_main_Load(EOS(STATIC_648), i18, i94, i101) → 531_0_main_Load(EOS(STATIC_531), i18, i94, i101)
531_0_main_Load(EOS(STATIC_531), i18, i94, i88) → 540_0_main_Load(EOS(STATIC_540), i18, i94, i88, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
540_0_main_Load(EOS(STATIC_540), x0, x1, x2, x0) → 540_0_main_Load(EOS(STATIC_540), x0, x1, +(x2, x1), x0) | &&(&&(>(+(x2, 1), 0), <=(x2, x0)), >(x1, 0))
R rules:
Filtered ground terms:
540_0_main_Load(x1, x2, x3, x4, x5) → 540_0_main_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_540_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_540_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
540_0_main_Load(x1, x2, x3, x4) → 540_0_main_Load(x2, x3, x4)
Cond_540_0_main_Load(x1, x2, x3, x4, x5) → Cond_540_0_main_Load(x1, x3, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
540_0_main_Load(x1, x2, x0) → 540_0_main_Load(x1, +(x2, x1), x0) | &&(&&(>(x2, -1), <=(x2, x0)), >(x1, 0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
540_0_MAIN_LOAD(x1, x2, x0) → COND_540_0_MAIN_LOAD(&&(&&(>(x2, -1), <=(x2, x0)), >(x1, 0)), x1, x2, x0)
COND_540_0_MAIN_LOAD(TRUE, x1, x2, x0) → 540_0_MAIN_LOAD(x1, +(x2, x1), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > -1 && x2[0] <= x0[0] && x1[0] > 0 ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] + x1[1] →* x2[0]∧x0[1] →* x0[0])
(1) (&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 540_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧540_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])∧(UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x2[0], -1)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ 540_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧540_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])∧(UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] + x1[0] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] + x1[0] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] + x1[0] ≥ 0)
(6) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] + [bni_15]x1[0] ≥ 0∧[1 + (-1)bso_16] + x1[0] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] + [bni_15]x1[0] ≥ 0∧[1 + (-1)bso_16] + x1[0] ≥ 0)
(8) (&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[0]1∧+(x2[1], x1[1])=x2[0]1∧x0[1]=x0[0]1 ⇒ COND_540_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_540_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])∧(UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥))
(9) (>(x1[0], 0)=TRUE∧>(x2[0], -1)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_540_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_540_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥540_0_MAIN_LOAD(x1[0], +(x2[0], x1[0]), x0[0])∧(UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥))
(10) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] + [(-1)bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(11) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] + [(-1)bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(12) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] + [(-1)bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(13) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] + [(-1)bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(14) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(540_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + x1
POL(COND_540_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
540_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])
540_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_540_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x2[0], x0[0])
COND_540_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])
COND_540_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 540_0_MAIN_LOAD(x1[1], +(x2[1], x1[1]), x0[1])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer