0 JBC
↳1 JBCToGraph (⇒, 90 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 20 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 190 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA8 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
x++;
y += 2;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 8 rules for P and 0 rules for R.
P rules:
294_0_main_Load(EOS(STATIC_294), i18, i46, i18) → 300_0_main_LE(EOS(STATIC_300), i18, i46, i18, i46)
300_0_main_LE(EOS(STATIC_300), i18, i46, i18, i46) → 309_0_main_LE(EOS(STATIC_309), i18, i46, i18, i46)
309_0_main_LE(EOS(STATIC_309), i18, i46, i18, i46) → 319_0_main_Inc(EOS(STATIC_319), i18, i46) | >(i18, i46)
319_0_main_Inc(EOS(STATIC_319), i18, i46) → 326_0_main_Inc(EOS(STATIC_326), +(i18, 1), i46) | >=(i18, 0)
326_0_main_Inc(EOS(STATIC_326), i51, i46) → 334_0_main_JMP(EOS(STATIC_334), i51, +(i46, 2)) | >=(i46, 0)
334_0_main_JMP(EOS(STATIC_334), i51, i53) → 347_0_main_Load(EOS(STATIC_347), i51, i53)
347_0_main_Load(EOS(STATIC_347), i51, i53) → 288_0_main_Load(EOS(STATIC_288), i51, i53)
288_0_main_Load(EOS(STATIC_288), i18, i46) → 294_0_main_Load(EOS(STATIC_294), i18, i46, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
294_0_main_Load(EOS(STATIC_294), x0, x1, x0) → 294_0_main_Load(EOS(STATIC_294), +(x0, 1), +(x1, 2), +(x0, 1)) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), >(+(x0, 1), 0))
R rules:
Filtered ground terms:
294_0_main_Load(x1, x2, x3, x4) → 294_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_294_0_main_Load(x1, x2, x3, x4, x5) → Cond_294_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
294_0_main_Load(x1, x2, x3) → 294_0_main_Load(x2, x3)
Cond_294_0_main_Load(x1, x2, x3, x4) → Cond_294_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
294_0_main_Load(x1, x0) → 294_0_main_Load(+(x1, 2), +(x0, 1)) | &&(&&(>(x1, -1), <(x1, x0)), >(x0, -1))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
294_0_MAIN_LOAD(x1, x0) → COND_294_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), x1, x0)
COND_294_0_MAIN_LOAD(TRUE, x1, x0) → 294_0_MAIN_LOAD(+(x1, 2), +(x0, 1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + 2 →* x1[0]∧x0[1] + 1 →* x0[0])
(1) (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 294_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧294_0_MAIN_LOAD(x1[0], x0[0])≥COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥))
(2) (>(x0[0], -1)=TRUE∧>(x1[0], -1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ 294_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧294_0_MAIN_LOAD(x1[0], x0[0])≥COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥))
(3) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) ([1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_294_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_294_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))∧(UIncreasing(294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥))
(8) ((UIncreasing(294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(9) ((UIncreasing(294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(294_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_294_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(2) = [2]
POL(1) = [1]
COND_294_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 294_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))
294_0_MAIN_LOAD(x1[0], x0[0]) → COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])
294_0_MAIN_LOAD(x1[0], x0[0]) → COND_294_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer