(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaA8
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaA8 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x > y) {
x++;
y += 2;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaA8.main([Ljava/lang/String;)V: Graph of 175 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaA8.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 8 rules for P and 0 rules for R.


P rules:
298_0_main_Load(EOS(STATIC_298), i18, i46, i18) → 303_0_main_LE(EOS(STATIC_303), i18, i46, i18, i46)
303_0_main_LE(EOS(STATIC_303), i18, i46, i18, i46) → 314_0_main_LE(EOS(STATIC_314), i18, i46, i18, i46)
314_0_main_LE(EOS(STATIC_314), i18, i46, i18, i46) → 323_0_main_Inc(EOS(STATIC_323), i18, i46) | >(i18, i46)
323_0_main_Inc(EOS(STATIC_323), i18, i46) → 331_0_main_Inc(EOS(STATIC_331), +(i18, 1), i46) | >=(i18, 0)
331_0_main_Inc(EOS(STATIC_331), i52, i46) → 339_0_main_JMP(EOS(STATIC_339), i52, +(i46, 2)) | >=(i46, 0)
339_0_main_JMP(EOS(STATIC_339), i52, i53) → 368_0_main_Load(EOS(STATIC_368), i52, i53)
368_0_main_Load(EOS(STATIC_368), i52, i53) → 291_0_main_Load(EOS(STATIC_291), i52, i53)
291_0_main_Load(EOS(STATIC_291), i18, i46) → 298_0_main_Load(EOS(STATIC_298), i18, i46, i18)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
298_0_main_Load(EOS(STATIC_298), x0, x1, x0) → 298_0_main_Load(EOS(STATIC_298), +(x0, 1), +(x1, 2), +(x0, 1)) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), >(+(x0, 1), 0))
R rules:

Filtered ground terms:



298_0_main_Load(x1, x2, x3, x4) → 298_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_298_0_main_Load(x1, x2, x3, x4, x5) → Cond_298_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:



298_0_main_Load(x1, x2, x3) → 298_0_main_Load(x2, x3)
Cond_298_0_main_Load(x1, x2, x3, x4) → Cond_298_0_main_Load(x1, x3, x4)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
298_0_main_Load(x1, x0) → 298_0_main_Load(+(x1, 2), +(x0, 1)) | &&(&&(>(x1, -1), <(x1, x0)), >(x0, -1))
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
298_0_MAIN_LOAD(x1, x0) → COND_298_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), x1, x0)
COND_298_0_MAIN_LOAD(TRUE, x1, x0) → 298_0_MAIN_LOAD(+(x1, 2), +(x0, 1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 298_0_MAIN_LOAD(x1[0], x0[0]) → COND_298_0_MAIN_LOAD(x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1, x1[0], x0[0])
(1): COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 298_0_MAIN_LOAD(x1[1] + 2, x0[1] + 1)

(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1x1[0]* x1[1]x0[0]* x0[1])


(1) -> (0), if (x1[1] + 2* x1[0]x0[1] + 1* x0[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@316c171f Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 298_0_MAIN_LOAD(x1, x0) → COND_298_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), x1, x0) the following chains were created:
  • We consider the chain 298_0_MAIN_LOAD(x1[0], x0[0]) → COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0]), COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1)) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1))=TRUEx1[0]=x1[1]x0[0]=x0[1]298_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧298_0_MAIN_LOAD(x1[0], x0[0])≥COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], -1)=TRUE>(x1[0], -1)=TRUE<(x1[0], x0[0])=TRUE298_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧298_0_MAIN_LOAD(x1[0], x0[0])≥COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    ([1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_298_0_MAIN_LOAD(TRUE, x1, x0) → 298_0_MAIN_LOAD(+(x1, 2), +(x0, 1)) the following chains were created:
  • We consider the chain COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1)) which results in the following constraint:

    (7)    (COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))∧(UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 298_0_MAIN_LOAD(x1, x0) → COND_298_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), x1, x0)
    • ([1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_298_0_MAIN_LOAD(TRUE, x1, x0) → 298_0_MAIN_LOAD(+(x1, 2), +(x0, 1))
    • ((UIncreasing(298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(298_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1   
POL(COND_298_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(2) = [2]   
POL(1) = [1]   

The following pairs are in P>:

COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 298_0_MAIN_LOAD(+(x1[1], 2), +(x0[1], 1))

The following pairs are in Pbound:

298_0_MAIN_LOAD(x1[0], x0[0]) → COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])

The following pairs are in P:

298_0_MAIN_LOAD(x1[0], x0[0]) → COND_298_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), x1[0], x0[0])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 298_0_MAIN_LOAD(x1[0], x0[0]) → COND_298_0_MAIN_LOAD(x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1, x1[0], x0[0])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_298_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 298_0_MAIN_LOAD(x1[1] + 2, x0[1] + 1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE