0 JBC
↳1 JBCToGraph (⇒, 260 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 80 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA4 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
y++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 7 rules for P and 0 rules for R.
P rules:
305_0_main_Load(EOS(STATIC_305), i18, i47, i18) → 311_0_main_LE(EOS(STATIC_311), i18, i47, i18, i47)
311_0_main_LE(EOS(STATIC_311), i18, i47, i18, i47) → 324_0_main_LE(EOS(STATIC_324), i18, i47, i18, i47)
324_0_main_LE(EOS(STATIC_324), i18, i47, i18, i47) → 335_0_main_Inc(EOS(STATIC_335), i18, i47) | >(i18, i47)
335_0_main_Inc(EOS(STATIC_335), i18, i47) → 343_0_main_JMP(EOS(STATIC_343), i18, +(i47, 1)) | >=(i47, 0)
343_0_main_JMP(EOS(STATIC_343), i18, i51) → 371_0_main_Load(EOS(STATIC_371), i18, i51)
371_0_main_Load(EOS(STATIC_371), i18, i51) → 299_0_main_Load(EOS(STATIC_299), i18, i51)
299_0_main_Load(EOS(STATIC_299), i18, i47) → 305_0_main_Load(EOS(STATIC_305), i18, i47, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
305_0_main_Load(EOS(STATIC_305), x0, x1, x0) → 305_0_main_Load(EOS(STATIC_305), x0, +(x1, 1), x0) | &&(>(+(x1, 1), 0), <(x1, x0))
R rules:
Filtered ground terms:
305_0_main_Load(x1, x2, x3, x4) → 305_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_305_0_main_Load(x1, x2, x3, x4, x5) → Cond_305_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
305_0_main_Load(x1, x2, x3) → 305_0_main_Load(x2, x3)
Cond_305_0_main_Load(x1, x2, x3, x4) → Cond_305_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
305_0_main_Load(x1, x0) → 305_0_main_Load(+(x1, 1), x0) | &&(>(x1, -1), <(x1, x0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
305_0_MAIN_LOAD(x1, x0) → COND_305_0_MAIN_LOAD(&&(>(x1, -1), <(x1, x0)), x1, x0)
COND_305_0_MAIN_LOAD(TRUE, x1, x0) → 305_0_MAIN_LOAD(+(x1, 1), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + 1 →* x1[0]∧x0[1] →* x0[0])
(1) (&&(>(x1[0], -1), <(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 305_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LOAD(x1[0], x0[0])≥COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥))
(2) (>(x1[0], -1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ 305_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LOAD(x1[0], x0[0])≥COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥))
(3) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_305_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥305_0_MAIN_LOAD(+(x1[1], 1), x0[1])∧(UIncreasing(305_0_MAIN_LOAD(+(x1[1], 1), x0[1])), ≥))
(8) ((UIncreasing(305_0_MAIN_LOAD(+(x1[1], 1), x0[1])), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(9) ((UIncreasing(305_0_MAIN_LOAD(+(x1[1], 1), x0[1])), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(305_0_MAIN_LOAD(+(x1[1], 1), x0[1])), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(305_0_MAIN_LOAD(+(x1[1], 1), x0[1])), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(305_0_MAIN_LOAD(x1, x2)) = [-1] + [2]x2 + [-1]x1
POL(COND_305_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_305_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 305_0_MAIN_LOAD(+(x1[1], 1), x0[1])
305_0_MAIN_LOAD(x1[0], x0[0]) → COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])
305_0_MAIN_LOAD(x1[0], x0[0]) → COND_305_0_MAIN_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer