(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaA10
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaA10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x != y) {
if (x > y) {
y++;
} else {
x++;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaA10.main([Ljava/lang/String;)V: Graph of 182 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaA10.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 16 rules for P and 0 rules for R.


P rules:
302_0_main_Load(EOS(STATIC_302), i18, i46, i18) → 306_0_main_EQ(EOS(STATIC_306), i18, i46, i18, i46)
306_0_main_EQ(EOS(STATIC_306), i18, i46, i18, i46) → 316_0_main_EQ(EOS(STATIC_316), i18, i46, i18, i46)
316_0_main_EQ(EOS(STATIC_316), i18, i46, i18, i46) → 325_0_main_Load(EOS(STATIC_325), i18, i46) | !(=(i18, i46))
325_0_main_Load(EOS(STATIC_325), i18, i46) → 333_0_main_Load(EOS(STATIC_333), i18, i46, i18)
333_0_main_Load(EOS(STATIC_333), i18, i46, i18) → 343_0_main_LE(EOS(STATIC_343), i18, i46, i18, i46)
343_0_main_LE(EOS(STATIC_343), i18, i46, i18, i46) → 351_0_main_LE(EOS(STATIC_351), i18, i46, i18, i46)
343_0_main_LE(EOS(STATIC_343), i18, i46, i18, i46) → 353_0_main_LE(EOS(STATIC_353), i18, i46, i18, i46)
351_0_main_LE(EOS(STATIC_351), i18, i46, i18, i46) → 361_0_main_Inc(EOS(STATIC_361), i18, i46) | <=(i18, i46)
361_0_main_Inc(EOS(STATIC_361), i18, i46) → 373_0_main_JMP(EOS(STATIC_373), +(i18, 1), i46) | >=(i18, 0)
373_0_main_JMP(EOS(STATIC_373), i50, i46) → 408_0_main_Load(EOS(STATIC_408), i50, i46)
408_0_main_Load(EOS(STATIC_408), i50, i46) → 298_0_main_Load(EOS(STATIC_298), i50, i46)
298_0_main_Load(EOS(STATIC_298), i18, i46) → 302_0_main_Load(EOS(STATIC_302), i18, i46, i18)
353_0_main_LE(EOS(STATIC_353), i18, i46, i18, i46) → 364_0_main_Inc(EOS(STATIC_364), i18, i46) | >(i18, i46)
364_0_main_Inc(EOS(STATIC_364), i18, i46) → 375_0_main_JMP(EOS(STATIC_375), i18, +(i46, 1)) | >=(i46, 0)
375_0_main_JMP(EOS(STATIC_375), i18, i52) → 413_0_main_Load(EOS(STATIC_413), i18, i52)
413_0_main_Load(EOS(STATIC_413), i18, i52) → 298_0_main_Load(EOS(STATIC_298), i18, i52)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
302_0_main_Load(EOS(STATIC_302), x0, x1, x0) → 302_0_main_Load(EOS(STATIC_302), +(x0, 1), x1, +(x0, 1)) | &&(>(x1, x0), >(+(x0, 1), 0))
302_0_main_Load(EOS(STATIC_302), x0, x1, x0) → 302_0_main_Load(EOS(STATIC_302), x0, +(x1, 1), x0) | &&(>(+(x1, 1), 0), <(x1, x0))
R rules:

Filtered ground terms:



302_0_main_Load(x1, x2, x3, x4) → 302_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_302_0_main_Load1(x1, x2, x3, x4, x5) → Cond_302_0_main_Load1(x1, x3, x4, x5)
Cond_302_0_main_Load(x1, x2, x3, x4, x5) → Cond_302_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:



302_0_main_Load(x1, x2, x3) → 302_0_main_Load(x2, x3)
Cond_302_0_main_Load(x1, x2, x3, x4) → Cond_302_0_main_Load(x1, x3, x4)
Cond_302_0_main_Load1(x1, x2, x3, x4) → Cond_302_0_main_Load1(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
302_0_main_Load(x1, x0) → 302_0_main_Load(x1, +(x0, 1)) | &&(>(x1, x0), >(x0, -1))
302_0_main_Load(x1, x0) → 302_0_main_Load(+(x1, 1), x0) | &&(>(x1, -1), <(x1, x0))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD(&&(>(x1, x0), >(x0, -1)), x1, x0)
COND_302_0_MAIN_LOAD(TRUE, x1, x0) → 302_0_MAIN_LOAD(x1, +(x0, 1))
302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD1(&&(>(x1, -1), <(x1, x0)), x1, x0)
COND_302_0_MAIN_LOAD1(TRUE, x1, x0) → 302_0_MAIN_LOAD(+(x1, 1), x0)
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(x1[0] > x0[0] && x0[0] > -1, x1[0], x0[0])
(1): COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], x0[1] + 1)
(2): 302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(x1[2] > -1 && x1[2] < x0[2], x1[2], x0[2])
(3): COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(x1[3] + 1, x0[3])

(0) -> (1), if (x1[0] > x0[0] && x0[0] > -1x1[0]* x1[1]x0[0]* x0[1])


(1) -> (0), if (x1[1]* x1[0]x0[1] + 1* x0[0])


(1) -> (2), if (x1[1]* x1[2]x0[1] + 1* x0[2])


(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2]x1[2]* x1[3]x0[2]* x0[3])


(3) -> (0), if (x1[3] + 1* x1[0]x0[3]* x0[0])


(3) -> (2), if (x1[3] + 1* x1[2]x0[3]* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4fbeec8f Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 2 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD(&&(>(x1, x0), >(x0, -1)), x1, x0) the following chains were created:
  • We consider the chain 302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0]), COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1)) which results in the following constraint:

    (1)    (&&(>(x1[0], x0[0]), >(x0[0], -1))=TRUEx1[0]=x1[1]x0[0]=x0[1]302_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧302_0_MAIN_LOAD(x1[0], x0[0])≥COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], x0[0])=TRUE>(x0[0], -1)=TRUE302_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧302_0_MAIN_LOAD(x1[0], x0[0])≥COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])∧(UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} ≥ 0∧[(-1)bso_15] + max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} + [-1]max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} ≥ 0∧[(-1)bso_15] + max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} + [-1]max{x0[0] + [-1]x1[0], [-1]x0[0] + x1[0]} ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[-1] + [-2]x0[0] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]x0[0] + [bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)







For Pair COND_302_0_MAIN_LOAD(TRUE, x1, x0) → 302_0_MAIN_LOAD(x1, +(x0, 1)) the following chains were created:
  • We consider the chain COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1)), 302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0]), COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1)) which results in the following constraint:

    (7)    (x1[1]=x1[0]+(x0[1], 1)=x0[0]&&(>(x1[0], x0[0]), >(x0[0], -1))=TRUEx1[0]=x1[1]1x0[0]=x0[1]1COND_302_0_MAIN_LOAD(TRUE, x1[1]1, x0[1]1)≥NonInfC∧COND_302_0_MAIN_LOAD(TRUE, x1[1]1, x0[1]1)≥302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))∧(UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥))



    We simplified constraint (7) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>(x1[0], +(x0[1], 1))=TRUE>(+(x0[1], 1), -1)=TRUECOND_302_0_MAIN_LOAD(TRUE, x1[0], +(x0[1], 1))≥NonInfC∧COND_302_0_MAIN_LOAD(TRUE, x1[0], +(x0[1], 1))≥302_0_MAIN_LOAD(x1[0], +(+(x0[1], 1), 1))∧(UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]max{[1] + x0[1] + [-1]x1[0], [-1] + [-1]x0[1] + x1[0]} ≥ 0∧[(-1)bso_17] + max{[1] + x0[1] + [-1]x1[0], [-1] + [-1]x0[1] + x1[0]} + [-1]max{[2] + x0[1] + [-1]x1[0], [-2] + [-1]x0[1] + x1[0]} ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]max{[1] + x0[1] + [-1]x1[0], [-1] + [-1]x0[1] + x1[0]} ≥ 0∧[(-1)bso_17] + max{[1] + x0[1] + [-1]x1[0], [-1] + [-1]x0[1] + x1[0]} + [-1]max{[2] + x0[1] + [-1]x1[0], [-2] + [-1]x0[1] + x1[0]} ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraints:

    (11)    (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0∧[-3] + [-2]x0[1] + [2]x1[0] ≥ 0∧[4] + [2]x0[1] + [-2]x1[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x0[1] + [bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + [-2]x0[1] + [2]x1[0] ≥ 0)


    (12)    (x1[0] + [-2] + [-1]x0[1] ≥ 0∧x0[1] + [1] ≥ 0∧[-3] + [-2]x0[1] + [2]x1[0] ≥ 0∧[-5] + [-2]x0[1] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]x0[1] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-2]x1[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] + [2]x1[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-1] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (0 ≥ 0∧x0[1] + [1] ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (16)    (0 ≥ 0∧x0[1] + [1] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)


    (17)    (0 ≥ 0∧[-1]x0[1] + [1] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (18)    (x1[0] ≥ 0∧[-1]x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-1] + [2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)


    (19)    (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-1] + [2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



  • We consider the chain COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3]), 302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0]), COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1)) which results in the following constraint:

    (20)    (+(x1[3], 1)=x1[0]x0[3]=x0[0]&&(>(x1[0], x0[0]), >(x0[0], -1))=TRUEx1[0]=x1[1]x0[0]=x0[1]COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥302_0_MAIN_LOAD(x1[1], +(x0[1], 1))∧(UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥))



    We simplified constraint (20) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (21)    (>(+(x1[3], 1), x0[0])=TRUE>(x0[0], -1)=TRUECOND_302_0_MAIN_LOAD(TRUE, +(x1[3], 1), x0[0])≥NonInfC∧COND_302_0_MAIN_LOAD(TRUE, +(x1[3], 1), x0[0])≥302_0_MAIN_LOAD(+(x1[3], 1), +(x0[0], 1))∧(UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥))



    We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (22)    (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]max{[-1] + x0[0] + [-1]x1[3], [1] + [-1]x0[0] + x1[3]} ≥ 0∧[(-1)bso_17] + max{[-1] + x0[0] + [-1]x1[3], [1] + [-1]x0[0] + x1[3]} + [-1]max{x0[0] + [-1]x1[3], [-1]x0[0] + x1[3]} ≥ 0)



    We simplified constraint (22) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (23)    (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]max{[-1] + x0[0] + [-1]x1[3], [1] + [-1]x0[0] + x1[3]} ≥ 0∧[(-1)bso_17] + max{[-1] + x0[0] + [-1]x1[3], [1] + [-1]x0[0] + x1[3]} + [-1]max{x0[0] + [-1]x1[3], [-1]x0[0] + x1[3]} ≥ 0)



    We simplified constraint (23) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraints:

    (24)    (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + [-2]x0[0] + [2]x1[3] ≥ 0∧[2]x0[0] + [-2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[3] ≥ 0∧[1 + (-1)bso_17] + [-2]x0[0] + [2]x1[3] ≥ 0)


    (25)    (x1[3] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + [-2]x0[0] + [2]x1[3] ≥ 0∧[-1] + [-2]x0[0] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[0] + [bni_16]x1[3] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (x1[3] ≥ 0∧x0[0] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[3] ≥ 0∧[1 + (-1)bso_17] + [2]x1[3] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (x1[3] ≥ 0∧x0[0] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-1] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[3] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (0 ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)







For Pair 302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD1(&&(>(x1, -1), <(x1, x0)), x1, x0) the following chains were created:
  • We consider the chain 302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2]), COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (29)    (&&(>(x1[2], -1), <(x1[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]302_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧302_0_MAIN_LOAD(x1[2], x0[2])≥COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))



    We simplified constraint (29) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (30)    (>(x1[2], -1)=TRUE<(x1[2], x0[2])=TRUE302_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧302_0_MAIN_LOAD(x1[2], x0[2])≥COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} ≥ 0∧[1 + (-1)bso_19] + max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} + [-1]max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} ≥ 0∧[1 + (-1)bso_19] + max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} + [-1]max{x0[2] + [-1]x1[2], [-1]x0[2] + x1[2]} ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[2]x0[2] + [-2]x1[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] + [(-1)bni_18]x1[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[2] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (34) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (35)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] + x0[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)







For Pair COND_302_0_MAIN_LOAD1(TRUE, x1, x0) → 302_0_MAIN_LOAD(+(x1, 1), x0) the following chains were created:
  • We consider the chain COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1)), 302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2]), COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (36)    (x1[1]=x1[2]+(x0[1], 1)=x0[2]&&(>(x1[2], -1), <(x1[2], x0[2]))=TRUEx1[2]=x1[3]x0[2]=x0[3]COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥302_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))



    We simplified constraint (36) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (37)    (>(x1[2], -1)=TRUE<(x1[2], +(x0[1], 1))=TRUECOND_302_0_MAIN_LOAD1(TRUE, x1[2], +(x0[1], 1))≥NonInfC∧COND_302_0_MAIN_LOAD1(TRUE, x1[2], +(x0[1], 1))≥302_0_MAIN_LOAD(+(x1[2], 1), +(x0[1], 1))∧(UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))



    We simplified constraint (37) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (38)    (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20] + [bni_20]max{[1] + x0[1] + [-1]x1[2], [-1] + [-1]x0[1] + x1[2]} ≥ 0∧[-1 + (-1)bso_21] + max{[1] + x0[1] + [-1]x1[2], [-1] + [-1]x0[1] + x1[2]} + [-1]max{x0[1] + [-1]x1[2], [-1]x0[1] + x1[2]} ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (39)    (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20] + [bni_20]max{[1] + x0[1] + [-1]x1[2], [-1] + [-1]x0[1] + x1[2]} ≥ 0∧[-1 + (-1)bso_21] + max{[1] + x0[1] + [-1]x1[2], [-1] + [-1]x0[1] + x1[2]} + [-1]max{x0[1] + [-1]x1[2], [-1]x0[1] + x1[2]} ≥ 0)



    We simplified constraint (39) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (40)    (x1[2] ≥ 0∧x0[1] + [-1]x1[2] ≥ 0∧[2] + [2]x0[1] + [-2]x1[2] ≥ 0∧[2]x0[1] + [-2]x1[2] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x0[1] + [(-1)bni_20]x1[2] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    (x1[2] ≥ 0∧x0[1] ≥ 0∧[2] + [2]x0[1] ≥ 0∧[2]x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x0[1] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (42)    (x1[2] ≥ 0∧x0[1] ≥ 0∧[1] + x0[1] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x0[1] ≥ 0∧[(-1)bso_21] ≥ 0)



  • We consider the chain COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3]), 302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2]), COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (43)    (+(x1[3], 1)=x1[2]x0[3]=x0[2]&&(>(x1[2], -1), <(x1[2], x0[2]))=TRUEx1[2]=x1[3]1x0[2]=x0[3]1COND_302_0_MAIN_LOAD1(TRUE, x1[3]1, x0[3]1)≥NonInfC∧COND_302_0_MAIN_LOAD1(TRUE, x1[3]1, x0[3]1)≥302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)∧(UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥))



    We simplified constraint (43) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (44)    (>(+(x1[3], 1), -1)=TRUE<(+(x1[3], 1), x0[2])=TRUECOND_302_0_MAIN_LOAD1(TRUE, +(x1[3], 1), x0[2])≥NonInfC∧COND_302_0_MAIN_LOAD1(TRUE, +(x1[3], 1), x0[2])≥302_0_MAIN_LOAD(+(+(x1[3], 1), 1), x0[2])∧(UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥))



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (45)    (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]max{[-1] + x0[2] + [-1]x1[3], [1] + [-1]x0[2] + x1[3]} ≥ 0∧[-1 + (-1)bso_21] + max{[-1] + x0[2] + [-1]x1[3], [1] + [-1]x0[2] + x1[3]} + [-1]max{[-2] + x0[2] + [-1]x1[3], [2] + [-1]x0[2] + x1[3]} ≥ 0)



    We simplified constraint (45) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (46)    (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]max{[-1] + x0[2] + [-1]x1[3], [1] + [-1]x0[2] + x1[3]} ≥ 0∧[-1 + (-1)bso_21] + max{[-1] + x0[2] + [-1]x1[3], [1] + [-1]x0[2] + x1[3]} + [-1]max{[-2] + x0[2] + [-1]x1[3], [2] + [-1]x0[2] + x1[3]} ≥ 0)



    We simplified constraint (46) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (47)    (x1[3] + [1] ≥ 0∧x0[2] + [-2] + [-1]x1[3] ≥ 0∧[-2] + [2]x0[2] + [-2]x1[3] ≥ 0∧[-4] + [2]x0[2] + [-2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20 + (-1)bni_20] + [bni_20]x0[2] + [(-1)bni_20]x1[3] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (48)    (x0[2] + [-1] + [-1]x1[3] ≥ 0∧x1[3] ≥ 0∧[2] + [2]x1[3] ≥ 0∧[2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x1[3] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (48) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (49)    (x0[2] ≥ 0∧x1[3] ≥ 0∧[2] + [2]x1[3] ≥ 0∧[2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x1[3] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (49) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (50)    (x0[2] ≥ 0∧x1[3] ≥ 0∧[1] + x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x1[3] ≥ 0∧[(-1)bso_21] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD(&&(>(x1, x0), >(x0, -1)), x1, x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)

  • COND_302_0_MAIN_LOAD(TRUE, x1, x0) → 302_0_MAIN_LOAD(x1, +(x0, 1))
    • (0 ≥ 0∧x0[1] + [1] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
    • (0 ≥ 0∧[-1]x0[1] + [1] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
    • (x1[0] ≥ 0∧[-1]x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-1] + [2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
    • (x1[0] ≥ 0∧x0[1] + [1] ≥ 0∧[1] + [2]x1[0] ≥ 0∧[-1] + [2]x1[0] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1]1, +(x0[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
    • (0 ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
    • (x1[3] ≥ 0∧x0[0] ≥ 0∧[1] + [2]x1[3] ≥ 0∧[-1] + [2]x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(x1[1], +(x0[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[3] ≥ 0∧[1 + (-1)bso_17] ≥ 0)

  • 302_0_MAIN_LOAD(x1, x0) → COND_302_0_MAIN_LOAD1(&&(>(x1, -1), <(x1, x0)), x1, x0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] + x0[2] ≥ 0 ⇒ (UIncreasing(COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)

  • COND_302_0_MAIN_LOAD1(TRUE, x1, x0) → 302_0_MAIN_LOAD(+(x1, 1), x0)
    • (x1[2] ≥ 0∧x0[1] ≥ 0∧[1] + x0[1] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x0[1] ≥ 0∧[(-1)bso_21] ≥ 0)
    • (x0[2] ≥ 0∧x1[3] ≥ 0∧[1] + x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(302_0_MAIN_LOAD(+(x1[3]1, 1), x0[3]1)), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x1[3] ≥ 0∧[(-1)bso_21] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(302_0_MAIN_LOAD(x1, x2)) = [1] + max{x2 + [-1]x1, [-1]x2 + x1}   
POL(COND_302_0_MAIN_LOAD(x1, x2, x3)) = [1] + max{x3 + [-1]x2, [-1]x3 + x2}   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(COND_302_0_MAIN_LOAD1(x1, x2, x3)) = max{x3 + [-1]x2, [-1]x3 + x2}   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1))
302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])

The following pairs are in Pbound:

302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])
COND_302_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 302_0_MAIN_LOAD(x1[1], +(x0[1], 1))
302_0_MAIN_LOAD(x1[2], x0[2]) → COND_302_0_MAIN_LOAD1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])
COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3])

The following pairs are in P:

302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(&&(>(x1[0], x0[0]), >(x0[0], -1)), x1[0], x0[0])
COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(+(x1[3], 1), x0[3])

There are no usable rules.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 302_0_MAIN_LOAD(x1[0], x0[0]) → COND_302_0_MAIN_LOAD(x1[0] > x0[0] && x0[0] > -1, x1[0], x0[0])
(3): COND_302_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 302_0_MAIN_LOAD(x1[3] + 1, x0[3])

(3) -> (0), if (x1[3] + 1* x1[0]x0[3]* x0[0])



The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(10) TRUE