0 JBC
↳1 JBCToGraph (⇒, 100 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 40 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 190 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 IDPNonInfProof (⇒, 20 ms)
↳13 IDP
↳14 IDependencyGraphProof (⇔, 0 ms)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA1 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x > 0) {
int y = 0;
while (y < x) {
y++;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 21 rules for P and 0 rules for R.
P rules:
146_0_main_LE(EOS(STATIC_146), i22, i22) → 149_0_main_LE(EOS(STATIC_149), i22, i22)
149_0_main_LE(EOS(STATIC_149), i22, i22) → 157_0_main_ConstantStackPush(EOS(STATIC_157), i22) | >(i22, 0)
157_0_main_ConstantStackPush(EOS(STATIC_157), i22) → 165_0_main_Store(EOS(STATIC_165), i22, 0)
165_0_main_Store(EOS(STATIC_165), i22, matching1) → 170_0_main_Load(EOS(STATIC_170), i22, 0) | =(matching1, 0)
170_0_main_Load(EOS(STATIC_170), i22, matching1) → 218_0_main_Load(EOS(STATIC_218), i22, 0) | =(matching1, 0)
218_0_main_Load(EOS(STATIC_218), i22, i23) → 282_0_main_Load(EOS(STATIC_282), i22, i23)
282_0_main_Load(EOS(STATIC_282), i22, i31) → 322_0_main_Load(EOS(STATIC_322), i22, i31)
322_0_main_Load(EOS(STATIC_322), i22, i37) → 351_0_main_Load(EOS(STATIC_351), i22, i37)
351_0_main_Load(EOS(STATIC_351), i22, i43) → 354_0_main_Load(EOS(STATIC_354), i22, i43, i43)
354_0_main_Load(EOS(STATIC_354), i22, i43, i43) → 357_0_main_GE(EOS(STATIC_357), i22, i43, i43, i22)
357_0_main_GE(EOS(STATIC_357), i22, i43, i43, i22) → 358_0_main_GE(EOS(STATIC_358), i22, i43, i43, i22)
357_0_main_GE(EOS(STATIC_357), i22, i43, i43, i22) → 360_0_main_GE(EOS(STATIC_360), i22, i43, i43, i22)
358_0_main_GE(EOS(STATIC_358), i22, i43, i43, i22) → 362_0_main_Inc(EOS(STATIC_362), i22) | >=(i43, i22)
362_0_main_Inc(EOS(STATIC_362), i22) → 367_0_main_JMP(EOS(STATIC_367), +(i22, -1)) | >(i22, 0)
367_0_main_JMP(EOS(STATIC_367), i46) → 373_0_main_Load(EOS(STATIC_373), i46)
373_0_main_Load(EOS(STATIC_373), i46) → 143_0_main_Load(EOS(STATIC_143), i46)
143_0_main_Load(EOS(STATIC_143), i18) → 146_0_main_LE(EOS(STATIC_146), i18, i18)
360_0_main_GE(EOS(STATIC_360), i22, i43, i43, i22) → 365_0_main_Inc(EOS(STATIC_365), i22, i43) | <(i43, i22)
365_0_main_Inc(EOS(STATIC_365), i22, i43) → 369_0_main_JMP(EOS(STATIC_369), i22, +(i43, 1)) | >=(i43, 0)
369_0_main_JMP(EOS(STATIC_369), i22, i47) → 377_0_main_Load(EOS(STATIC_377), i22, i47)
377_0_main_Load(EOS(STATIC_377), i22, i47) → 351_0_main_Load(EOS(STATIC_351), i22, i47)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
357_0_main_GE(EOS(STATIC_357), x0, x1, x1, x0) → 357_0_main_GE(EOS(STATIC_357), +(x0, -1), 0, 0, +(x0, -1)) | &&(>=(x1, x0), >(x0, 1))
357_0_main_GE(EOS(STATIC_357), x0, x1, x1, x0) → 357_0_main_GE(EOS(STATIC_357), x0, +(x1, 1), +(x1, 1), x0) | &&(>(+(x1, 1), 0), <(x1, x0))
R rules:
Filtered ground terms:
357_0_main_GE(x1, x2, x3, x4, x5) → 357_0_main_GE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_357_0_main_GE1(x1, x2, x3, x4, x5, x6) → Cond_357_0_main_GE1(x1, x3, x4, x5, x6)
Cond_357_0_main_GE(x1, x2, x3, x4, x5, x6) → Cond_357_0_main_GE(x1, x3, x4, x5, x6)
Filtered duplicate args:
357_0_main_GE(x1, x2, x3, x4) → 357_0_main_GE(x3, x4)
Cond_357_0_main_GE(x1, x2, x3, x4, x5) → Cond_357_0_main_GE(x1, x4, x5)
Cond_357_0_main_GE1(x1, x2, x3, x4, x5) → Cond_357_0_main_GE1(x1, x4, x5)
Filtered unneeded arguments:
Cond_357_0_main_GE(x1, x2, x3) → Cond_357_0_main_GE(x1, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
357_0_main_GE(x1, x0) → 357_0_main_GE(0, +(x0, -1)) | &&(>=(x1, x0), >(x0, 1))
357_0_main_GE(x1, x0) → 357_0_main_GE(+(x1, 1), x0) | &&(>(x1, -1), <(x1, x0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
357_0_MAIN_GE(x1, x0) → COND_357_0_MAIN_GE(&&(>=(x1, x0), >(x0, 1)), x1, x0)
COND_357_0_MAIN_GE(TRUE, x1, x0) → 357_0_MAIN_GE(0, +(x0, -1))
357_0_MAIN_GE(x1, x0) → COND_357_0_MAIN_GE1(&&(>(x1, -1), <(x1, x0)), x1, x0)
COND_357_0_MAIN_GE1(TRUE, x1, x0) → 357_0_MAIN_GE(+(x1, 1), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x0[0] > 1 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (0 →* x1[0]∧x0[1] + -1 →* x0[0])
(1) -> (2), if (0 →* x1[2]∧x0[1] + -1 →* x0[2])
(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2] ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] + 1 →* x1[0]∧x0[3] →* x0[0])
(3) -> (2), if (x1[3] + 1 →* x1[2]∧x0[3] →* x0[2])
(1) (&&(>=(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 357_0_MAIN_GE(x1[0], x0[0])≥NonInfC∧357_0_MAIN_GE(x1[0], x0[0])≥COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])∧(UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥))
(2) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ 357_0_MAIN_GE(x1[0], x0[0])≥NonInfC∧357_0_MAIN_GE(x1[0], x0[0])≥COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])∧(UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (COND_357_0_MAIN_GE(TRUE, x1[1], x0[1])≥NonInfC∧COND_357_0_MAIN_GE(TRUE, x1[1], x0[1])≥357_0_MAIN_GE(0, +(x0[1], -1))∧(UIncreasing(357_0_MAIN_GE(0, +(x0[1], -1))), ≥))
(9) ((UIncreasing(357_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(357_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(357_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(12) ((UIncreasing(357_0_MAIN_GE(0, +(x0[1], -1))), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(13) (&&(>(x1[2], -1), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 357_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧357_0_MAIN_GE(x1[2], x0[2])≥COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(14) (>(x1[2], -1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 357_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧357_0_MAIN_GE(x1[2], x0[2])≥COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(15) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(16) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(17) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x1[2] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3])≥NonInfC∧COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3])≥357_0_MAIN_GE(+(x1[3], 1), x0[3])∧(UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥))
(20) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(21) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(22) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(23) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[(-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(357_0_MAIN_GE(x1, x2)) = [-1] + x2
POL(COND_357_0_MAIN_GE(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_357_0_MAIN_GE1(x1, x2, x3)) = [-1] + x3
POL(<(x1, x2)) = [-1]
COND_357_0_MAIN_GE(TRUE, x1[1], x0[1]) → 357_0_MAIN_GE(0, +(x0[1], -1))
357_0_MAIN_GE(x1[0], x0[0]) → COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])
357_0_MAIN_GE(x1[2], x0[2]) → COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])
357_0_MAIN_GE(x1[0], x0[0]) → COND_357_0_MAIN_GE(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x1[0], x0[0])
357_0_MAIN_GE(x1[2], x0[2]) → COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])
COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3]) → 357_0_MAIN_GE(+(x1[3], 1), x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x1[3] + 1 →* x1[0]∧x0[3] →* x0[0])
(3) -> (2), if (x1[3] + 1 →* x1[2]∧x0[3] →* x0[2])
(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2] ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x1[3] + 1 →* x1[2]∧x0[3] →* x0[2])
(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2] ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(1) (COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3])≥NonInfC∧COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3])≥357_0_MAIN_GE(+(x1[3], 1), x0[3])∧(UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥))
(2) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(3) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(4) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(5) ((UIncreasing(357_0_MAIN_GE(+(x1[3], 1), x0[3])), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
(6) (&&(>(x1[2], -1), <(x1[2], x0[2]))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 357_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧357_0_MAIN_GE(x1[2], x0[2])≥COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(7) (>(x1[2], -1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 357_0_MAIN_GE(x1[2], x0[2])≥NonInfC∧357_0_MAIN_GE(x1[2], x0[2])≥COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])∧(UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥))
(8) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(9) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(10) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12] + [(-1)bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(11) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [bni_12]x1[2] + [(2)bni_12]x0[2] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_357_0_MAIN_GE1(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2
POL(357_0_MAIN_GE(x1, x2)) = [-1]x1 + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<(x1, x2)) = [-1]
357_0_MAIN_GE(x1[2], x0[2]) → COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])
357_0_MAIN_GE(x1[2], x0[2]) → COND_357_0_MAIN_GE1(&&(>(x1[2], -1), <(x1[2], x0[2])), x1[2], x0[2])
COND_357_0_MAIN_GE1(TRUE, x1[3], x0[3]) → 357_0_MAIN_GE(+(x1[3], 1), x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer