0 JBC
↳1 JBCToGraph (⇒, 360 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 330 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 60 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class Mod {
public static void main(String[] args) {
int x = args[0].length();
int y = args[1].length();
mod(x, y);
}
public static int mod(int x, int y) {
while (x >= y && y > 0) {
x = minus(x,y);
}
return x;
}
public static int minus(int x, int y) {
while (y != 0) {
if (y > 0) {
y--;
x--;
} else {
y++;
x++;
}
}
return x;
}
}
Generated 27 rules for P and 0 rules for R.
P rules:
508_0_mod_Load(EOS(STATIC_508), i84, i83, i84, i83) → 510_0_mod_LT(EOS(STATIC_510), i84, i83, i84, i83, i84)
510_0_mod_LT(EOS(STATIC_510), i84, i83, i84, i83, i84) → 513_0_mod_LT(EOS(STATIC_513), i84, i83, i84, i83, i84)
513_0_mod_LT(EOS(STATIC_513), i84, i83, i84, i83, i84) → 517_0_mod_Load(EOS(STATIC_517), i84, i83, i84) | >=(i83, i84)
517_0_mod_Load(EOS(STATIC_517), i84, i83, i84) → 521_0_mod_LE(EOS(STATIC_521), i84, i83, i84, i84)
521_0_mod_LE(EOS(STATIC_521), i90, i83, i90, i90) → 526_0_mod_LE(EOS(STATIC_526), i90, i83, i90, i90)
526_0_mod_LE(EOS(STATIC_526), i90, i83, i90, i90) → 533_0_mod_Load(EOS(STATIC_533), i90, i83, i90) | >(i90, 0)
533_0_mod_Load(EOS(STATIC_533), i90, i83, i90) → 540_0_mod_Load(EOS(STATIC_540), i90, i90, i83)
540_0_mod_Load(EOS(STATIC_540), i90, i90, i83) → 546_0_mod_InvokeMethod(EOS(STATIC_546), i90, i90, i83, i90)
546_0_mod_InvokeMethod(EOS(STATIC_546), i90, i90, i83, i90) → 550_0_minus_Load(EOS(STATIC_550), i90, i90, i83, i90, i83, i90)
550_0_minus_Load(EOS(STATIC_550), i90, i90, i83, i90, i83, i90) → 576_0_minus_Load(EOS(STATIC_576), i90, i90, i83, i90, i83, i90)
576_0_minus_Load(EOS(STATIC_576), i90, i90, i83, i90, i98, i99) → 580_0_minus_EQ(EOS(STATIC_580), i90, i90, i83, i90, i98, i99, i99)
580_0_minus_EQ(EOS(STATIC_580), i90, i90, i83, i90, i98, i106, i106) → 582_0_minus_EQ(EOS(STATIC_582), i90, i90, i83, i90, i98, i106, i106)
580_0_minus_EQ(EOS(STATIC_580), i90, i90, i83, i90, i98, matching1, matching2) → 583_0_minus_EQ(EOS(STATIC_583), i90, i90, i83, i90, i98, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
582_0_minus_EQ(EOS(STATIC_582), i90, i90, i83, i90, i98, i106, i106) → 585_0_minus_Load(EOS(STATIC_585), i90, i90, i83, i90, i98, i106) | >(i106, 0)
585_0_minus_Load(EOS(STATIC_585), i90, i90, i83, i90, i98, i106) → 590_0_minus_LE(EOS(STATIC_590), i90, i90, i83, i90, i98, i106, i106)
590_0_minus_LE(EOS(STATIC_590), i90, i90, i83, i90, i98, i106, i106) → 594_0_minus_Inc(EOS(STATIC_594), i90, i90, i83, i90, i98, i106) | >(i106, 0)
594_0_minus_Inc(EOS(STATIC_594), i90, i90, i83, i90, i98, i106) → 598_0_minus_Inc(EOS(STATIC_598), i90, i90, i83, i90, i98, +(i106, -1)) | >(i106, 0)
598_0_minus_Inc(EOS(STATIC_598), i90, i90, i83, i90, i98, i107) → 603_0_minus_JMP(EOS(STATIC_603), i90, i90, i83, i90, +(i98, -1), i107)
603_0_minus_JMP(EOS(STATIC_603), i90, i90, i83, i90, i108, i107) → 623_0_minus_Load(EOS(STATIC_623), i90, i90, i83, i90, i108, i107)
623_0_minus_Load(EOS(STATIC_623), i90, i90, i83, i90, i108, i107) → 576_0_minus_Load(EOS(STATIC_576), i90, i90, i83, i90, i108, i107)
583_0_minus_EQ(EOS(STATIC_583), i90, i90, i83, i90, i98, matching1, matching2) → 588_0_minus_Load(EOS(STATIC_588), i90, i90, i83, i90, i98) | &&(=(matching1, 0), =(matching2, 0))
588_0_minus_Load(EOS(STATIC_588), i90, i90, i83, i90, i98) → 592_0_minus_Return(EOS(STATIC_592), i90, i90, i83, i90, i98)
592_0_minus_Return(EOS(STATIC_592), i90, i90, i83, i90, i98) → 596_0_mod_Store(EOS(STATIC_596), i90, i90, i98)
596_0_mod_Store(EOS(STATIC_596), i90, i90, i98) → 601_0_mod_JMP(EOS(STATIC_601), i90, i98, i90)
601_0_mod_JMP(EOS(STATIC_601), i90, i98, i90) → 618_0_mod_Load(EOS(STATIC_618), i90, i98, i90)
618_0_mod_Load(EOS(STATIC_618), i90, i98, i90) → 505_0_mod_Load(EOS(STATIC_505), i90, i98, i90)
505_0_mod_Load(EOS(STATIC_505), i84, i83, i84) → 508_0_mod_Load(EOS(STATIC_508), i84, i83, i84, i83)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
580_0_minus_EQ(EOS(STATIC_580), x0, x0, x1, x0, x2, x3, x3) → 580_0_minus_EQ(EOS(STATIC_580), x0, x0, x1, x0, +(x2, -1), +(x3, -1), +(x3, -1)) | >(x3, 0)
580_0_minus_EQ(EOS(STATIC_580), x0, x0, x1, x0, x2, 0, 0) → 580_0_minus_EQ(EOS(STATIC_580), x0, x0, x2, x0, x2, x0, x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Filtered ground terms:
580_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8) → 580_0_minus_EQ(x2, x3, x4, x5, x6, x7, x8)
EOS(x1) → EOS
Cond_580_0_minus_EQ1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_580_0_minus_EQ1(x1, x3, x4, x5, x6, x7)
Cond_580_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_580_0_minus_EQ(x1, x3, x4, x5, x6, x7, x8, x9)
Filtered duplicate args:
580_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7) → 580_0_minus_EQ(x3, x4, x5, x7)
Cond_580_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_580_0_minus_EQ(x1, x4, x5, x6, x8)
Cond_580_0_minus_EQ1(x1, x2, x3, x4, x5, x6) → Cond_580_0_minus_EQ1(x1, x4, x5, x6)
Filtered unneeded arguments:
Cond_580_0_minus_EQ(x1, x2, x3, x4, x5) → Cond_580_0_minus_EQ(x1, x3, x4, x5)
580_0_minus_EQ(x1, x2, x3, x4) → 580_0_minus_EQ(x2, x3, x4)
Cond_580_0_minus_EQ1(x1, x2, x3, x4) → Cond_580_0_minus_EQ1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
580_0_minus_EQ(x0, x2, x3) → 580_0_minus_EQ(x0, +(x2, -1), +(x3, -1)) | >(x3, 0)
580_0_minus_EQ(x0, x2, 0) → 580_0_minus_EQ(x0, x2, x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
580_0_MINUS_EQ(x0, x2, x3) → COND_580_0_MINUS_EQ(>(x3, 0), x0, x2, x3)
COND_580_0_MINUS_EQ(TRUE, x0, x2, x3) → 580_0_MINUS_EQ(x0, +(x2, -1), +(x3, -1))
580_0_MINUS_EQ(x0, x2, 0) → COND_580_0_MINUS_EQ1(&&(>=(x2, x0), >(x0, 0)), x0, x2, 0)
COND_580_0_MINUS_EQ1(TRUE, x0, x2, 0) → 580_0_MINUS_EQ(x0, x2, x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(1) -> (2), if (x0[1] →* x0[2]∧x2[1] + -1 →* x2[2]∧x3[1] + -1 →* 0)
(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0 ∧x0[2] →* x0[3]∧x2[2] →* x2[3])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x2[0]∧x0[3] →* x3[0])
(3) -> (2), if (x0[3] →* x0[2]∧x2[3] →* x2[2]∧x0[3] →* 0)
(1) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1] ⇒ 580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(2) (>(x3[0], 0)=TRUE ⇒ 580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(3) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[bni_20] = 0∧0 = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(7) (x3[0] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[bni_20] = 0∧0 = 0∧[(-2)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(8) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[0]1∧+(x2[1], -1)=x2[0]1∧+(x3[1], -1)=x3[0]1 ⇒ COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(9) (>(x3[0], 0)=TRUE ⇒ COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥580_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(10) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(11) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(12) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(13) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(14) (x3[0] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(15) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[2]∧+(x2[1], -1)=x2[2]∧+(x3[1], -1)=0 ⇒ COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(16) (>(x3[0], 0)=TRUE∧+(x3[0], -1)=0 ⇒ COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥580_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(17) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(18) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(19) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(20) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(21) (x3[0] ≥ 0∧x3[0] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(22) (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUE∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 580_0_MINUS_EQ(x0[2], x2[2], 0)≥NonInfC∧580_0_MINUS_EQ(x0[2], x2[2], 0)≥COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)∧(UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥))
(23) (>=(x2[2], x0[2])=TRUE∧>(x0[2], 0)=TRUE ⇒ 580_0_MINUS_EQ(x0[2], x2[2], 0)≥NonInfC∧580_0_MINUS_EQ(x0[2], x2[2], 0)≥COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)∧(UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥))
(24) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] + x0[2] ≥ 0)
(25) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] + x0[2] ≥ 0)
(26) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] + x0[2] ≥ 0)
(27) (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] + x0[2] ≥ 0)
(28) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[1 + (-1)bso_25] + x0[2] ≥ 0)
(29) (x0[3]=x0[0]∧x2[3]=x2[0]∧x0[3]=x3[0] ⇒ COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥580_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(30) (COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥580_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(31) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(32) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(33) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(34) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(35) (x0[3]=x0[2]∧x2[3]=x2[2]∧x0[3]=0 ⇒ COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥580_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(36) (COND_580_0_MINUS_EQ1(TRUE, 0, x2[3], 0)≥NonInfC∧COND_580_0_MINUS_EQ1(TRUE, 0, x2[3], 0)≥580_0_MINUS_EQ(0, x2[3], 0)∧(UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(37) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(38) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(39) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[(-1)bso_27] ≥ 0)
(40) ((UIncreasing(580_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧0 = 0∧[(-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(580_0_MINUS_EQ(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(COND_580_0_MINUS_EQ(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_580_0_MINUS_EQ1(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
580_0_MINUS_EQ(x0[2], x2[2], 0) → COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)
580_0_MINUS_EQ(x0[2], x2[2], 0) → COND_580_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)
580_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
COND_580_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0) → 580_0_MINUS_EQ(x0[3], x2[3], x0[3])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x2[0]∧x0[3] →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[0]1∧+(x2[1], -1)=x2[0]1∧+(x3[1], -1)=x3[0]1 ⇒ COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(2) (>(x3[0], 0)=TRUE ⇒ COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_580_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥580_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(3) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x3[0] ≥ 0 ⇒ (UIncreasing(580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1] ⇒ 580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(9) (>(x3[0], 0)=TRUE ⇒ 580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧580_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(10) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (x3[0] ≥ 0 ⇒ (UIncreasing(COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_580_0_MINUS_EQ(x1, x2, x3, x4)) = [-1] + x4
POL(580_0_MINUS_EQ(x1, x2, x3)) = [-1] + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
COND_580_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 580_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
580_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
580_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_580_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer