(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: LogMult
public class LogMult{

public static int log(int x, int y) {

int res = 1;

if (x < 0 || y < 1) return 0;
else {
while (x > y) {
y = y*y;
res = 2*res;
}
}
return res;

}





public static void main(String[] args) {
Random.args = args;

int x = Random.random();
log(x,2);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
LogMult.main([Ljava/lang/String;)V: Graph of 131 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: LogMult.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 14 rules for P and 0 rules for R.


P rules:
491_0_log_Load(EOS(STATIC_491), i32, i32, i65, i32) → 494_0_log_LE(EOS(STATIC_494), i32, i32, i65, i32, i65)
494_0_log_LE(EOS(STATIC_494), i32, i32, i65, i32, i65) → 498_0_log_LE(EOS(STATIC_498), i32, i32, i65, i32, i65)
498_0_log_LE(EOS(STATIC_498), i32, i32, i65, i32, i65) → 502_0_log_Load(EOS(STATIC_502), i32, i32, i65) | >(i32, i65)
502_0_log_Load(EOS(STATIC_502), i32, i32, i65) → 505_0_log_Load(EOS(STATIC_505), i32, i32, i65, i65)
505_0_log_Load(EOS(STATIC_505), i32, i32, i65, i65) → 507_0_log_IntArithmetic(EOS(STATIC_507), i32, i32, i65, i65)
507_0_log_IntArithmetic(EOS(STATIC_507), i32, i32, i65, i65) → 509_0_log_Store(EOS(STATIC_509), i32, i32, *(i65, i65)) | &&(>(i65, 1), >(i65, 1))
509_0_log_Store(EOS(STATIC_509), i32, i32, i71) → 513_0_log_ConstantStackPush(EOS(STATIC_513), i32, i32, i71)
513_0_log_ConstantStackPush(EOS(STATIC_513), i32, i32, i71) → 515_0_log_Load(EOS(STATIC_515), i32, i32, i71)
515_0_log_Load(EOS(STATIC_515), i32, i32, i71) → 517_0_log_IntArithmetic(EOS(STATIC_517), i32, i32, i71)
517_0_log_IntArithmetic(EOS(STATIC_517), i32, i32, i71) → 519_0_log_Store(EOS(STATIC_519), i32, i32, i71)
519_0_log_Store(EOS(STATIC_519), i32, i32, i71) → 521_0_log_JMP(EOS(STATIC_521), i32, i32, i71)
521_0_log_JMP(EOS(STATIC_521), i32, i32, i71) → 526_0_log_Load(EOS(STATIC_526), i32, i32, i71)
526_0_log_Load(EOS(STATIC_526), i32, i32, i71) → 488_0_log_Load(EOS(STATIC_488), i32, i32, i71)
488_0_log_Load(EOS(STATIC_488), i32, i32, i65) → 491_0_log_Load(EOS(STATIC_491), i32, i32, i65, i32)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
491_0_log_Load(EOS(STATIC_491), x0, x0, x1, x0) → 491_0_log_Load(EOS(STATIC_491), x0, x0, *(x1, x1), x0) | &&(>(x1, 1), <(x1, x0))
R rules:

Filtered ground terms:



491_0_log_Load(x1, x2, x3, x4, x5) → 491_0_log_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_491_0_log_Load(x1, x2, x3, x4, x5, x6) → Cond_491_0_log_Load(x1, x3, x4, x5, x6)

Filtered duplicate args:



491_0_log_Load(x1, x2, x3, x4) → 491_0_log_Load(x3, x4)
Cond_491_0_log_Load(x1, x2, x3, x4, x5) → Cond_491_0_log_Load(x1, x4, x5)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
491_0_log_Load(x1, x0) → 491_0_log_Load(*(x1, x1), x0) | &&(>(x1, 1), <(x1, x0))
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
491_0_LOG_LOAD(x1, x0) → COND_491_0_LOG_LOAD(&&(>(x1, 1), <(x1, x0)), x1, x0)
COND_491_0_LOG_LOAD(TRUE, x1, x0) → 491_0_LOG_LOAD(*(x1, x1), x0)
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(x1[0] > 1 && x1[0] < x0[0], x1[0], x0[0])
(1): COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(x1[1] * x1[1], x0[1])

(0) -> (1), if (x1[0] > 1 && x1[0] < x0[0]x1[0]* x1[1]x0[0]* x0[1])


(1) -> (0), if (x1[1] * x1[1]* x1[0]x0[1]* x0[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@318430a5 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 491_0_LOG_LOAD(x1, x0) → COND_491_0_LOG_LOAD(&&(>(x1, 1), <(x1, x0)), x1, x0) the following chains were created:
  • We consider the chain 491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0]), COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1]) which results in the following constraint:

    (1)    (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUEx1[0]=x1[1]x0[0]=x0[1]491_0_LOG_LOAD(x1[0], x0[0])≥NonInfC∧491_0_LOG_LOAD(x1[0], x0[0])≥COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])∧(UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], 1)=TRUE<(x1[0], x0[0])=TRUE491_0_LOG_LOAD(x1[0], x0[0])≥NonInfC∧491_0_LOG_LOAD(x1[0], x0[0])≥COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])∧(UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)







For Pair COND_491_0_LOG_LOAD(TRUE, x1, x0) → 491_0_LOG_LOAD(*(x1, x1), x0) the following chains were created:
  • We consider the chain 491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0]), COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1]), 491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0]) which results in the following constraint:

    (8)    (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUEx1[0]=x1[1]x0[0]=x0[1]*(x1[1], x1[1])=x1[0]1x0[1]=x0[0]1COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1])≥491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])∧(UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥))



    We simplified constraint (8) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x1[0], 1)=TRUE<(x1[0], x0[0])=TRUECOND_491_0_LOG_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_491_0_LOG_LOAD(TRUE, x1[0], x0[0])≥491_0_LOG_LOAD(*(x1[0], x1[0]), x0[0])∧(UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x1[0] ≥ 0∧[-2 + (-1)bso_16] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x1[0] ≥ 0∧[-2 + (-1)bso_16] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x1[0] ≥ 0∧[-2 + (-1)bso_16] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] + [3]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [3]x1[0] + x1[0]2 ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 491_0_LOG_LOAD(x1, x0) → COND_491_0_LOG_LOAD(&&(>(x1, 1), <(x1, x0)), x1, x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)

  • COND_491_0_LOG_LOAD(TRUE, x1, x0) → 491_0_LOG_LOAD(*(x1, x1), x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [3]x1[0] + x1[0]2 ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(491_0_LOG_LOAD(x1, x2)) = [1] + x2 + [-1]x1   
POL(COND_491_0_LOG_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<(x1, x2)) = [-1]   
POL(*(x1, x2)) = x1·x2   

The following pairs are in P>:

491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])

The following pairs are in Pbound:

491_0_LOG_LOAD(x1[0], x0[0]) → COND_491_0_LOG_LOAD(&&(>(x1[0], 1), <(x1[0], x0[0])), x1[0], x0[0])
COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])

The following pairs are in P:

COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(*(x1[1], x1[1]), x0[1])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_491_0_LOG_LOAD(TRUE, x1[1], x0[1]) → 491_0_LOG_LOAD(x1[1] * x1[1], x0[1])


The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE