0 JBC
↳1 JBCToGraph (⇒, 160 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 250 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
public class LogIterative {
public static int log(int x, int y) {
int res = 0;
while (x >= y && y > 1) {
res++;
x = x/y;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
log(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 15 rules for P and 0 rules for R.
P rules:
683_0_log_Load(EOS(STATIC_683), i109, i108, i109, i108) → 685_0_log_LT(EOS(STATIC_685), i109, i108, i109, i108, i109)
685_0_log_LT(EOS(STATIC_685), i109, i108, i109, i108, i109) → 688_0_log_LT(EOS(STATIC_688), i109, i108, i109, i108, i109)
688_0_log_LT(EOS(STATIC_688), i109, i108, i109, i108, i109) → 691_0_log_Load(EOS(STATIC_691), i109, i108, i109) | >=(i108, i109)
691_0_log_Load(EOS(STATIC_691), i109, i108, i109) → 695_0_log_ConstantStackPush(EOS(STATIC_695), i109, i108, i109, i109)
695_0_log_ConstantStackPush(EOS(STATIC_695), i109, i108, i109, i109) → 699_0_log_LE(EOS(STATIC_699), i109, i108, i109, i109, 1)
699_0_log_LE(EOS(STATIC_699), i119, i108, i119, i119, matching1) → 704_0_log_LE(EOS(STATIC_704), i119, i108, i119, i119, 1) | =(matching1, 1)
704_0_log_LE(EOS(STATIC_704), i119, i108, i119, i119, matching1) → 710_0_log_Inc(EOS(STATIC_710), i119, i108, i119) | &&(>(i119, 1), =(matching1, 1))
710_0_log_Inc(EOS(STATIC_710), i119, i108, i119) → 714_0_log_Load(EOS(STATIC_714), i119, i108, i119)
714_0_log_Load(EOS(STATIC_714), i119, i108, i119) → 719_0_log_Load(EOS(STATIC_719), i119, i119, i108)
719_0_log_Load(EOS(STATIC_719), i119, i119, i108) → 722_0_log_IntArithmetic(EOS(STATIC_722), i119, i119, i108, i119)
722_0_log_IntArithmetic(EOS(STATIC_722), i119, i119, i108, i119) → 726_0_log_Store(EOS(STATIC_726), i119, i119, /(i108, i119)) | >(i119, 1)
726_0_log_Store(EOS(STATIC_726), i119, i119, i122) → 727_0_log_JMP(EOS(STATIC_727), i119, i122, i119)
727_0_log_JMP(EOS(STATIC_727), i119, i122, i119) → 731_0_log_Load(EOS(STATIC_731), i119, i122, i119)
731_0_log_Load(EOS(STATIC_731), i119, i122, i119) → 681_0_log_Load(EOS(STATIC_681), i119, i122, i119)
681_0_log_Load(EOS(STATIC_681), i109, i108, i109) → 683_0_log_Load(EOS(STATIC_683), i109, i108, i109, i108)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
683_0_log_Load(EOS(STATIC_683), x0, x1, x0, x1) → 683_0_log_Load(EOS(STATIC_683), x0, /(x1, x0), x0, /(x1, x0)) | &&(>=(x1, x0), >(x0, 1))
R rules:
Filtered ground terms:
683_0_log_Load(x1, x2, x3, x4, x5) → 683_0_log_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_683_0_log_Load(x1, x2, x3, x4, x5, x6) → Cond_683_0_log_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
683_0_log_Load(x1, x2, x3, x4) → 683_0_log_Load(x3, x4)
Cond_683_0_log_Load(x1, x2, x3, x4, x5) → Cond_683_0_log_Load(x1, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
683_0_log_Load(x0, x1) → 683_0_log_Load(x0, /(x1, x0)) | &&(>=(x1, x0), >(x0, 1))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
683_0_LOG_LOAD(x0, x1) → COND_683_0_LOG_LOAD(&&(>=(x1, x0), >(x0, 1)), x0, x1)
COND_683_0_LOG_LOAD(TRUE, x0, x1) → 683_0_LOG_LOAD(x0, /(x1, x0))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x0[0] > 1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (0), if (x0[1] →* x0[0]∧x1[1] / x0[1] →* x1[0])
(1) (&&(>=(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 683_0_LOG_LOAD(x0[0], x1[0])≥NonInfC∧683_0_LOG_LOAD(x0[0], x1[0])≥COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])∧(UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥))
(2) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ 683_0_LOG_LOAD(x0[0], x1[0])≥NonInfC∧683_0_LOG_LOAD(x0[0], x1[0])≥COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])∧(UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (&&(>=(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x0[0]1∧/(x1[1], x0[1])=x1[0]1 ⇒ COND_683_0_LOG_LOAD(TRUE, x0[1], x1[1])≥NonInfC∧COND_683_0_LOG_LOAD(TRUE, x0[1], x1[1])≥683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))∧(UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥))
(9) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ COND_683_0_LOG_LOAD(TRUE, x0[0], x1[0])≥NonInfC∧COND_683_0_LOG_LOAD(TRUE, x0[0], x1[0])≥683_0_LOG_LOAD(x0[0], /(x1[0], x0[0]))∧(UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥))
(10) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[(-1)bso_19] + x1[0] + [-1]max{x1[0], [-1]x1[0]} + min{max{x0[0], [-1]x0[0]} + [-1], max{x1[0], [-1]x1[0]}} ≥ 0)
(11) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[(-1)bso_19] + x1[0] + [-1]max{x1[0], [-1]x1[0]} + min{max{x0[0], [-1]x0[0]} + [-1], max{x1[0], [-1]x1[0]}} ≥ 0)
(12) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0∧[2]x1[0] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[-1 + (-1)bso_19] + x0[0] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0∧[2]x0[0] + [2]x1[0] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[-1 + (-1)bso_19] + x0[0] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] + [2]x0[0] + [2]x1[0] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[1 + (-1)bso_19] + x0[0] ≥ 0)
(15) (x1[0] ≥ 0∧x0[0] ≥ 0∧[2] + x0[0] + x1[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[1 + (-1)bso_19] + x0[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = 0
POL(683_0_LOG_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_683_0_LOG_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, x0[0])1 @ {683_0_LOG_LOAD_2/1}) = max{x1, [-1]x1} + [-1]min{max{x2, [-1]x2} + [-1], max{x1, [-1]x1}}
COND_683_0_LOG_LOAD(TRUE, x0[1], x1[1]) → 683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))
683_0_LOG_LOAD(x0[0], x1[0]) → COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])
COND_683_0_LOG_LOAD(TRUE, x0[1], x1[1]) → 683_0_LOG_LOAD(x0[1], /(x1[1], x0[1]))
683_0_LOG_LOAD(x0[0], x1[0]) → COND_683_0_LOG_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer