0 JBC
↳1 JBCToGraph (⇒, 90 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 50 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 80 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
public class LogBuiltIn{
public static int log(int x) {
int res = 0;
while (x > 1) {
x = x/2;
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 11 rules for P and 0 rules for R.
P rules:
384_0_log_ConstantStackPush(EOS(STATIC_384), i74, i74) → 387_0_log_LE(EOS(STATIC_387), i74, i74, 1)
387_0_log_LE(EOS(STATIC_387), i82, i82, matching1) → 390_0_log_LE(EOS(STATIC_390), i82, i82, 1) | =(matching1, 1)
390_0_log_LE(EOS(STATIC_390), i82, i82, matching1) → 395_0_log_Load(EOS(STATIC_395), i82) | &&(>(i82, 1), =(matching1, 1))
395_0_log_Load(EOS(STATIC_395), i82) → 400_0_log_ConstantStackPush(EOS(STATIC_400), i82)
400_0_log_ConstantStackPush(EOS(STATIC_400), i82) → 404_0_log_IntArithmetic(EOS(STATIC_404), i82, 2)
404_0_log_IntArithmetic(EOS(STATIC_404), i82, matching1) → 408_0_log_Store(EOS(STATIC_408), /(i82, 2)) | &&(>(i82, 1), =(matching1, 2))
408_0_log_Store(EOS(STATIC_408), i85) → 412_0_log_Inc(EOS(STATIC_412), i85)
412_0_log_Inc(EOS(STATIC_412), i85) → 415_0_log_JMP(EOS(STATIC_415), i85)
415_0_log_JMP(EOS(STATIC_415), i85) → 418_0_log_Load(EOS(STATIC_418), i85)
418_0_log_Load(EOS(STATIC_418), i85) → 381_0_log_Load(EOS(STATIC_381), i85)
381_0_log_Load(EOS(STATIC_381), i74) → 384_0_log_ConstantStackPush(EOS(STATIC_384), i74, i74)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
384_0_log_ConstantStackPush(EOS(STATIC_384), x0, x0) → 384_0_log_ConstantStackPush(EOS(STATIC_384), /(x0, 2), /(x0, 2)) | >(x0, 1)
R rules:
Filtered ground terms:
384_0_log_ConstantStackPush(x1, x2, x3) → 384_0_log_ConstantStackPush(x2, x3)
EOS(x1) → EOS
Cond_384_0_log_ConstantStackPush(x1, x2, x3, x4) → Cond_384_0_log_ConstantStackPush(x1, x3, x4)
Filtered duplicate args:
384_0_log_ConstantStackPush(x1, x2) → 384_0_log_ConstantStackPush(x2)
Cond_384_0_log_ConstantStackPush(x1, x2, x3) → Cond_384_0_log_ConstantStackPush(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
384_0_log_ConstantStackPush(x0) → 384_0_log_ConstantStackPush(/(x0, 2)) | >(x0, 1)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
384_0_LOG_CONSTANTSTACKPUSH(x0) → COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0, 1), x0)
COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0) → 384_0_LOG_CONSTANTSTACKPUSH(/(x0, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] / 2 →* x0[0])
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 384_0_LOG_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧384_0_LOG_CONSTANTSTACKPUSH(x0[0])≥COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 384_0_LOG_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧384_0_LOG_CONSTANTSTACKPUSH(x0[0])≥COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (>(x0[0], 1)=TRUE∧x0[0]=x0[1]∧/(x0[1], 2)=x0[0]1 ⇒ COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[1])≥384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))∧(UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥))
(8) (>(x0[0], 1)=TRUE ⇒ COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[0])≥NonInfC∧COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[0])≥384_0_LOG_CONSTANTSTACKPUSH(/(x0[0], 2))∧(UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥))
(9) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(10) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = 0
POL(384_0_LOG_CONSTANTSTACKPUSH(x1)) = [-1] + x1
POL(COND_384_0_LOG_CONSTANTSTACKPUSH(x1, x2)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {384_0_LOG_CONSTANTSTACKPUSH_1/0}) = max{x1, [-1]x1} + [-1]
COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[1]) → 384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))
384_0_LOG_CONSTANTSTACKPUSH(x0[0]) → COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
COND_384_0_LOG_CONSTANTSTACKPUSH(TRUE, x0[1]) → 384_0_LOG_CONSTANTSTACKPUSH(/(x0[1], 2))
384_0_LOG_CONSTANTSTACKPUSH(x0[0]) → COND_384_0_LOG_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer