0 JBC
↳1 JBCToGraph (⇒, 300 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 100 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 820 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 IDPNonInfProof (⇒, 20 ms)
↳13 IDP
↳14 IDependencyGraphProof (⇔, 0 ms)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
public class LogAG{
// adapted from Arts&Giesl, 2001
public static int half(int x) {
int res = 0;
while (x > 1) {
x = x-2;
res++;
}
return res;
}
public static int log(int x) {
int res = 0;
while (x > 1) {
x = half(x-2)+1;
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 35 rules for P and 0 rules for R.
P rules:
1230_0_log_ConstantStackPush(EOS(STATIC_1230), i337, i337) → 1232_0_log_LE(EOS(STATIC_1232), i337, i337, 1)
1232_0_log_LE(EOS(STATIC_1232), i345, i345, matching1) → 1235_0_log_LE(EOS(STATIC_1235), i345, i345, 1) | =(matching1, 1)
1235_0_log_LE(EOS(STATIC_1235), i345, i345, matching1) → 1238_0_log_Load(EOS(STATIC_1238), i345) | &&(>(i345, 1), =(matching1, 1))
1238_0_log_Load(EOS(STATIC_1238), i345) → 1241_0_log_ConstantStackPush(EOS(STATIC_1241), i345)
1241_0_log_ConstantStackPush(EOS(STATIC_1241), i345) → 1244_0_log_IntArithmetic(EOS(STATIC_1244), i345, 2)
1244_0_log_IntArithmetic(EOS(STATIC_1244), i345, matching1) → 1247_0_log_InvokeMethod(EOS(STATIC_1247), -(i345, 2)) | &&(>(i345, 0), =(matching1, 2))
1247_0_log_InvokeMethod(EOS(STATIC_1247), i347) → 1250_0_half_ConstantStackPush(EOS(STATIC_1250), i347, i347)
1250_0_half_ConstantStackPush(EOS(STATIC_1250), i347, i347) → 1252_0_half_Store(EOS(STATIC_1252), i347, i347, 0)
1252_0_half_Store(EOS(STATIC_1252), i347, i347, matching1) → 1253_0_half_Load(EOS(STATIC_1253), i347, i347, 0) | =(matching1, 0)
1253_0_half_Load(EOS(STATIC_1253), i347, i347, matching1) → 1285_0_half_Load(EOS(STATIC_1285), i347, i347, 0) | =(matching1, 0)
1285_0_half_Load(EOS(STATIC_1285), i356, i354, i355) → 1316_0_half_Load(EOS(STATIC_1316), i356, i354, i355)
1316_0_half_Load(EOS(STATIC_1316), i356, i369, i370) → 1348_0_half_Load(EOS(STATIC_1348), i356, i369, i370)
1348_0_half_Load(EOS(STATIC_1348), i356, i382, i383) → 1381_0_half_Load(EOS(STATIC_1381), i356, i382, i383)
1381_0_half_Load(EOS(STATIC_1381), i356, i397, i398) → 1383_0_half_ConstantStackPush(EOS(STATIC_1383), i356, i397, i398, i397)
1383_0_half_ConstantStackPush(EOS(STATIC_1383), i356, i397, i398, i397) → 1385_0_half_LE(EOS(STATIC_1385), i356, i397, i398, i397, 1)
1385_0_half_LE(EOS(STATIC_1385), i356, i404, i398, i404, matching1) → 1386_0_half_LE(EOS(STATIC_1386), i356, i404, i398, i404, 1) | =(matching1, 1)
1385_0_half_LE(EOS(STATIC_1385), i356, i405, i398, i405, matching1) → 1388_0_half_LE(EOS(STATIC_1388), i356, i405, i398, i405, 1) | =(matching1, 1)
1386_0_half_LE(EOS(STATIC_1386), i356, i404, i398, i404, matching1) → 1389_0_half_Load(EOS(STATIC_1389), i356, i398) | &&(<=(i404, 1), =(matching1, 1))
1389_0_half_Load(EOS(STATIC_1389), i356, i398) → 1392_0_half_Return(EOS(STATIC_1392), i356, i398)
1392_0_half_Return(EOS(STATIC_1392), i356, i398) → 1395_0_log_ConstantStackPush(EOS(STATIC_1395), i398)
1395_0_log_ConstantStackPush(EOS(STATIC_1395), i398) → 1398_0_log_IntArithmetic(EOS(STATIC_1398), i398, 1)
1398_0_log_IntArithmetic(EOS(STATIC_1398), i398, matching1) → 1401_0_log_Store(EOS(STATIC_1401), +(i398, 1)) | &&(>=(i398, 0), =(matching1, 1))
1401_0_log_Store(EOS(STATIC_1401), i407) → 1404_0_log_Inc(EOS(STATIC_1404), i407)
1404_0_log_Inc(EOS(STATIC_1404), i407) → 1407_0_log_JMP(EOS(STATIC_1407), i407)
1407_0_log_JMP(EOS(STATIC_1407), i407) → 1413_0_log_Load(EOS(STATIC_1413), i407)
1413_0_log_Load(EOS(STATIC_1413), i407) → 1228_0_log_Load(EOS(STATIC_1228), i407)
1228_0_log_Load(EOS(STATIC_1228), i337) → 1230_0_log_ConstantStackPush(EOS(STATIC_1230), i337, i337)
1388_0_half_LE(EOS(STATIC_1388), i356, i405, i398, i405, matching1) → 1391_0_half_Load(EOS(STATIC_1391), i356, i405, i398) | &&(>(i405, 1), =(matching1, 1))
1391_0_half_Load(EOS(STATIC_1391), i356, i405, i398) → 1394_0_half_ConstantStackPush(EOS(STATIC_1394), i356, i398, i405)
1394_0_half_ConstantStackPush(EOS(STATIC_1394), i356, i398, i405) → 1397_0_half_IntArithmetic(EOS(STATIC_1397), i356, i398, i405, 2)
1397_0_half_IntArithmetic(EOS(STATIC_1397), i356, i398, i405, matching1) → 1400_0_half_Store(EOS(STATIC_1400), i356, i398, -(i405, 2)) | &&(>(i405, 0), =(matching1, 2))
1400_0_half_Store(EOS(STATIC_1400), i356, i398, i406) → 1403_0_half_Inc(EOS(STATIC_1403), i356, i406, i398)
1403_0_half_Inc(EOS(STATIC_1403), i356, i406, i398) → 1406_0_half_JMP(EOS(STATIC_1406), i356, i406, +(i398, 1)) | >=(i398, 0)
1406_0_half_JMP(EOS(STATIC_1406), i356, i406, i408) → 1410_0_half_Load(EOS(STATIC_1410), i356, i406, i408)
1410_0_half_Load(EOS(STATIC_1410), i356, i406, i408) → 1381_0_half_Load(EOS(STATIC_1381), i356, i406, i408)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1385_0_half_LE(EOS(STATIC_1385), x0, x1, x2, x1, 1) → 1385_0_half_LE(EOS(STATIC_1385), -(+(x2, 1), 2), -(+(x2, 1), 2), 0, -(+(x2, 1), 2), 1) | &&(>(x2, 0), <=(x1, 1))
1385_0_half_LE(EOS(STATIC_1385), x0, x1, x2, x1, 1) → 1385_0_half_LE(EOS(STATIC_1385), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(+(x2, 1), 0), >(x1, 1))
R rules:
Filtered ground terms:
1385_0_half_LE(x1, x2, x3, x4, x5, x6) → 1385_0_half_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_1385_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1385_0_half_LE1(x1, x3, x4, x5, x6)
Cond_1385_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1385_0_half_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
1385_0_half_LE(x1, x2, x3, x4) → 1385_0_half_LE(x1, x3, x4)
Cond_1385_0_half_LE(x1, x2, x3, x4, x5) → Cond_1385_0_half_LE(x1, x2, x4, x5)
Cond_1385_0_half_LE1(x1, x2, x3, x4, x5) → Cond_1385_0_half_LE1(x1, x2, x4, x5)
Filtered unneeded arguments:
Cond_1385_0_half_LE(x1, x2, x3, x4) → Cond_1385_0_half_LE(x1, x3)
Cond_1385_0_half_LE1(x1, x2, x3, x4) → Cond_1385_0_half_LE1(x1, x3, x4)
1385_0_half_LE(x1, x2, x3) → 1385_0_half_LE(x2, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1385_0_half_LE(x2, x1) → 1385_0_half_LE(0, -(+(x2, 1), 2)) | &&(>(x2, 0), <=(x1, 1))
1385_0_half_LE(x2, x1) → 1385_0_half_LE(+(x2, 1), -(x1, 2)) | &&(>(x2, -1), >(x1, 1))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE(&&(>(x2, 0), <=(x1, 1)), x2, x1)
COND_1385_0_HALF_LE(TRUE, x2, x1) → 1385_0_HALF_LE(0, -(+(x2, 1), 2))
1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
COND_1385_0_HALF_LE1(TRUE, x2, x1) → 1385_0_HALF_LE(+(x2, 1), -(x1, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > 0 && x1[0] <= 1 ∧x2[0] →* x2[1]∧x1[0] →* x1[1])
(1) -> (0), if (0 →* x2[0]∧x2[1] + 1 - 2 →* x1[0])
(1) -> (2), if (0 →* x2[2]∧x2[1] + 1 - 2 →* x1[2])
(2) -> (3), if (x2[2] > -1 && x1[2] > 1 ∧x2[2] →* x2[3]∧x1[2] →* x1[3])
(3) -> (0), if (x2[3] + 1 →* x2[0]∧x1[3] - 2 →* x1[0])
(3) -> (2), if (x2[3] + 1 →* x2[2]∧x1[3] - 2 →* x1[2])
(1) (&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ 1385_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1385_0_HALF_LE(x2[0], x1[0])≥COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(2) (>(x2[0], 0)=TRUE∧<=(x1[0], 1)=TRUE ⇒ 1385_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1385_0_HALF_LE(x2[0], x1[0])≥COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(3) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(4) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(5) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(6) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(7) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(8) (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(9) (&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(+(x2[1], 1), 2)=x1[0]1∧&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[0]2∧-(+(x2[1]1, 1), 2)=x1[0]2∧&&(>(x2[0]2, 0), <=(x1[0]2, 1))=TRUE∧x2[0]2=x2[1]2∧x1[0]2=x1[1]2 ⇒ COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))), ≥))
(10) (&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(+(x2[1], 1), 2)=x1[0]1∧&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[2]∧-(+(x2[1]1, 1), 2)=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))), ≥))
(11) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(+(x2[1], 1), 2)=x1[0]1∧&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥1385_0_HALF_LE(0, -(+(x2[1], 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))
(12) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]1∧-(+(x2[1], 1), 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥1385_0_HALF_LE(0, -(+(x2[1], 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))
(13) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), 0)=TRUE∧<=(-(x1[2], 2), 1)=TRUE∧>(-(+(+(x2[2], 1), 1), 2), 1)=TRUE ⇒ COND_1385_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(0, -(+(+(x2[2], 1), 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))
(14) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(15) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(16) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(17) ([2] + x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[2] + x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(18) ([2] + x2[2] ≥ 0∧x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)
(19) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ 1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(20) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE ⇒ 1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(21) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(23) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(24) (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21 + (2)bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧-(+(x2[1], 1), 2)=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]1∧-(x1[3], 2)=x1[0]1∧&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(26) (>(x2[0], 0)=TRUE∧<=(x1[0], 1)=TRUE∧>(-(+(x2[0], 1), 2), 1)=TRUE∧<=(-(-(+(x2[0], 1), 2), 2), 1)=TRUE ⇒ COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥1385_0_HALF_LE(+(0, 1), -(-(+(x2[0], 1), 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(27) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(28) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(29) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(30) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[3] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(31) ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(32) ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(33) (&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧-(+(x2[1], 1), 2)=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(34) (>(x2[0], 0)=TRUE∧<=(x1[0], 1)=TRUE∧>(-(+(x2[0], 1), 2), 1)=TRUE∧>(-(-(+(x2[0], 1), 2), 2), 1)=TRUE ⇒ COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥1385_0_HALF_LE(+(0, 1), -(-(+(x2[0], 1), 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(35) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(36) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(37) (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(38) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[-4] + x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(39) ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(40) ([4] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(41) ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(42) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[0]∧-(x1[3]1, 2)=x1[0]∧&&(>(x2[0], 0), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(43) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), 0)=TRUE∧<=(-(-(x1[2], 2), 2), 1)=TRUE ⇒ COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(44) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(45) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(46) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(47) (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(48) (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(49) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[2]2∧-(x1[3]1, 2)=x1[2]2∧&&(>(x2[2]2, -1), >(x1[2]2, 1))=TRUE∧x2[2]2=x2[3]2∧x1[2]2=x1[3]2 ⇒ COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(50) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), -1)=TRUE∧>(-(-(x1[2], 2), 2), 1)=TRUE ⇒ COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(51) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(52) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(53) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(54) (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-4] + x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(55) (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-2] + x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(56) (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(1385_0_HALF_LE(x1, x2)) = x2 + x1
POL(COND_1385_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(2) = [2]
POL(COND_1385_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1
POL(-1) = [-1]
1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])
COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (2), if (0 →* x2[2]∧x2[1] + 1 - 2 →* x1[2])
(3) -> (2), if (x2[3] + 1 →* x2[2]∧x1[3] - 2 →* x1[2])
(2) -> (3), if (x2[2] > -1 && x1[2] > 1 ∧x2[2] →* x2[3]∧x1[2] →* x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x2[3] + 1 →* x2[2]∧x1[3] - 2 →* x1[2])
(2) -> (3), if (x2[2] > -1 && x1[2] > 1 ∧x2[2] →* x2[3]∧x1[2] →* x1[3])
(1) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1 ⇒ COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(2) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE ⇒ COND_1385_0_HALF_LE1(TRUE, x2[2], x1[2])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[2], x1[2])≥1385_0_HALF_LE(+(x2[2], 1), -(x1[2], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(3) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ 1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(8) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE ⇒ 1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(9) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(10) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(11) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(COND_1385_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1
POL(1385_0_HALF_LE(x1, x2)) = x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer