(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: LogAG
public class LogAG{

// adapted from Arts&Giesl, 2001

public static int half(int x) {

int res = 0;

while (x > 1) {

x = x-2;
res++;

}

return res;

}


public static int log(int x) {

int res = 0;

while (x > 1) {

x = half(x-2)+1;
res++;

}

return res;

}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}



public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
LogAG.main([Ljava/lang/String;)V: Graph of 145 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: LogAG.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 35 rules for P and 0 rules for R.


P rules:
1230_0_log_ConstantStackPush(EOS(STATIC_1230), i337, i337) → 1232_0_log_LE(EOS(STATIC_1232), i337, i337, 1)
1232_0_log_LE(EOS(STATIC_1232), i345, i345, matching1) → 1235_0_log_LE(EOS(STATIC_1235), i345, i345, 1) | =(matching1, 1)
1235_0_log_LE(EOS(STATIC_1235), i345, i345, matching1) → 1238_0_log_Load(EOS(STATIC_1238), i345) | &&(>(i345, 1), =(matching1, 1))
1238_0_log_Load(EOS(STATIC_1238), i345) → 1241_0_log_ConstantStackPush(EOS(STATIC_1241), i345)
1241_0_log_ConstantStackPush(EOS(STATIC_1241), i345) → 1244_0_log_IntArithmetic(EOS(STATIC_1244), i345, 2)
1244_0_log_IntArithmetic(EOS(STATIC_1244), i345, matching1) → 1247_0_log_InvokeMethod(EOS(STATIC_1247), -(i345, 2)) | &&(>(i345, 0), =(matching1, 2))
1247_0_log_InvokeMethod(EOS(STATIC_1247), i347) → 1250_0_half_ConstantStackPush(EOS(STATIC_1250), i347, i347)
1250_0_half_ConstantStackPush(EOS(STATIC_1250), i347, i347) → 1252_0_half_Store(EOS(STATIC_1252), i347, i347, 0)
1252_0_half_Store(EOS(STATIC_1252), i347, i347, matching1) → 1253_0_half_Load(EOS(STATIC_1253), i347, i347, 0) | =(matching1, 0)
1253_0_half_Load(EOS(STATIC_1253), i347, i347, matching1) → 1285_0_half_Load(EOS(STATIC_1285), i347, i347, 0) | =(matching1, 0)
1285_0_half_Load(EOS(STATIC_1285), i356, i354, i355) → 1316_0_half_Load(EOS(STATIC_1316), i356, i354, i355)
1316_0_half_Load(EOS(STATIC_1316), i356, i369, i370) → 1348_0_half_Load(EOS(STATIC_1348), i356, i369, i370)
1348_0_half_Load(EOS(STATIC_1348), i356, i382, i383) → 1381_0_half_Load(EOS(STATIC_1381), i356, i382, i383)
1381_0_half_Load(EOS(STATIC_1381), i356, i397, i398) → 1383_0_half_ConstantStackPush(EOS(STATIC_1383), i356, i397, i398, i397)
1383_0_half_ConstantStackPush(EOS(STATIC_1383), i356, i397, i398, i397) → 1385_0_half_LE(EOS(STATIC_1385), i356, i397, i398, i397, 1)
1385_0_half_LE(EOS(STATIC_1385), i356, i404, i398, i404, matching1) → 1386_0_half_LE(EOS(STATIC_1386), i356, i404, i398, i404, 1) | =(matching1, 1)
1385_0_half_LE(EOS(STATIC_1385), i356, i405, i398, i405, matching1) → 1388_0_half_LE(EOS(STATIC_1388), i356, i405, i398, i405, 1) | =(matching1, 1)
1386_0_half_LE(EOS(STATIC_1386), i356, i404, i398, i404, matching1) → 1389_0_half_Load(EOS(STATIC_1389), i356, i398) | &&(<=(i404, 1), =(matching1, 1))
1389_0_half_Load(EOS(STATIC_1389), i356, i398) → 1392_0_half_Return(EOS(STATIC_1392), i356, i398)
1392_0_half_Return(EOS(STATIC_1392), i356, i398) → 1395_0_log_ConstantStackPush(EOS(STATIC_1395), i398)
1395_0_log_ConstantStackPush(EOS(STATIC_1395), i398) → 1398_0_log_IntArithmetic(EOS(STATIC_1398), i398, 1)
1398_0_log_IntArithmetic(EOS(STATIC_1398), i398, matching1) → 1401_0_log_Store(EOS(STATIC_1401), +(i398, 1)) | &&(>=(i398, 0), =(matching1, 1))
1401_0_log_Store(EOS(STATIC_1401), i407) → 1404_0_log_Inc(EOS(STATIC_1404), i407)
1404_0_log_Inc(EOS(STATIC_1404), i407) → 1407_0_log_JMP(EOS(STATIC_1407), i407)
1407_0_log_JMP(EOS(STATIC_1407), i407) → 1413_0_log_Load(EOS(STATIC_1413), i407)
1413_0_log_Load(EOS(STATIC_1413), i407) → 1228_0_log_Load(EOS(STATIC_1228), i407)
1228_0_log_Load(EOS(STATIC_1228), i337) → 1230_0_log_ConstantStackPush(EOS(STATIC_1230), i337, i337)
1388_0_half_LE(EOS(STATIC_1388), i356, i405, i398, i405, matching1) → 1391_0_half_Load(EOS(STATIC_1391), i356, i405, i398) | &&(>(i405, 1), =(matching1, 1))
1391_0_half_Load(EOS(STATIC_1391), i356, i405, i398) → 1394_0_half_ConstantStackPush(EOS(STATIC_1394), i356, i398, i405)
1394_0_half_ConstantStackPush(EOS(STATIC_1394), i356, i398, i405) → 1397_0_half_IntArithmetic(EOS(STATIC_1397), i356, i398, i405, 2)
1397_0_half_IntArithmetic(EOS(STATIC_1397), i356, i398, i405, matching1) → 1400_0_half_Store(EOS(STATIC_1400), i356, i398, -(i405, 2)) | &&(>(i405, 0), =(matching1, 2))
1400_0_half_Store(EOS(STATIC_1400), i356, i398, i406) → 1403_0_half_Inc(EOS(STATIC_1403), i356, i406, i398)
1403_0_half_Inc(EOS(STATIC_1403), i356, i406, i398) → 1406_0_half_JMP(EOS(STATIC_1406), i356, i406, +(i398, 1)) | >=(i398, 0)
1406_0_half_JMP(EOS(STATIC_1406), i356, i406, i408) → 1410_0_half_Load(EOS(STATIC_1410), i356, i406, i408)
1410_0_half_Load(EOS(STATIC_1410), i356, i406, i408) → 1381_0_half_Load(EOS(STATIC_1381), i356, i406, i408)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1385_0_half_LE(EOS(STATIC_1385), x0, x1, x2, x1, 1) → 1385_0_half_LE(EOS(STATIC_1385), -(+(x2, 1), 2), -(+(x2, 1), 2), 0, -(+(x2, 1), 2), 1) | &&(>(x2, 0), <=(x1, 1))
1385_0_half_LE(EOS(STATIC_1385), x0, x1, x2, x1, 1) → 1385_0_half_LE(EOS(STATIC_1385), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(+(x2, 1), 0), >(x1, 1))
R rules:

Filtered ground terms:



1385_0_half_LE(x1, x2, x3, x4, x5, x6) → 1385_0_half_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_1385_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1385_0_half_LE1(x1, x3, x4, x5, x6)
Cond_1385_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1385_0_half_LE(x1, x3, x4, x5, x6)

Filtered duplicate args:



1385_0_half_LE(x1, x2, x3, x4) → 1385_0_half_LE(x1, x3, x4)
Cond_1385_0_half_LE(x1, x2, x3, x4, x5) → Cond_1385_0_half_LE(x1, x2, x4, x5)
Cond_1385_0_half_LE1(x1, x2, x3, x4, x5) → Cond_1385_0_half_LE1(x1, x2, x4, x5)

Filtered unneeded arguments:



Cond_1385_0_half_LE(x1, x2, x3, x4) → Cond_1385_0_half_LE(x1, x3)
Cond_1385_0_half_LE1(x1, x2, x3, x4) → Cond_1385_0_half_LE1(x1, x3, x4)
1385_0_half_LE(x1, x2, x3) → 1385_0_half_LE(x2, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1385_0_half_LE(x2, x1) → 1385_0_half_LE(0, -(+(x2, 1), 2)) | &&(>(x2, 0), <=(x1, 1))
1385_0_half_LE(x2, x1) → 1385_0_half_LE(+(x2, 1), -(x1, 2)) | &&(>(x2, -1), >(x1, 1))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE(&&(>(x2, 0), <=(x1, 1)), x2, x1)
COND_1385_0_HALF_LE(TRUE, x2, x1) → 1385_0_HALF_LE(0, -(+(x2, 1), 2))
1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
COND_1385_0_HALF_LE1(TRUE, x2, x1) → 1385_0_HALF_LE(+(x2, 1), -(x1, 2))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(x2[0] > 0 && x1[0] <= 1, x2[0], x1[0])
(1): COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, x2[1] + 1 - 2)
(2): 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(x2[2] > -1 && x1[2] > 1, x2[2], x1[2])
(3): COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(x2[3] + 1, x1[3] - 2)

(0) -> (1), if (x2[0] > 0 && x1[0] <= 1x2[0]* x2[1]x1[0]* x1[1])


(1) -> (0), if (0* x2[0]x2[1] + 1 - 2* x1[0])


(1) -> (2), if (0* x2[2]x2[1] + 1 - 2* x1[2])


(2) -> (3), if (x2[2] > -1 && x1[2] > 1x2[2]* x2[3]x1[2]* x1[3])


(3) -> (0), if (x2[3] + 1* x2[0]x1[3] - 2* x1[0])


(3) -> (2), if (x2[3] + 1* x2[2]x1[3] - 2* x1[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@79e9131a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 3 Max Right Steps: 2

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE(&&(>(x2, 0), <=(x1, 1)), x2, x1) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)) which results in the following constraint:

    (1)    (&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]1385_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1385_0_HALF_LE(x2[0], x1[0])≥COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x2[0], 0)=TRUE<=(x1[0], 1)=TRUE1385_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1385_0_HALF_LE(x2[0], x1[0])≥COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)


    (8)    (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)







For Pair COND_1385_0_HALF_LE(TRUE, x2, x1) → 1385_0_HALF_LE(0, -(+(x2, 1), 2)) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)) which results in the following constraint:

    (9)    (&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(+(x2[1], 1), 2)=x1[0]1&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[0]2-(+(x2[1]1, 1), 2)=x1[0]2&&(>(x2[0]2, 0), <=(x1[0]2, 1))=TRUEx2[0]2=x2[1]2x1[0]2=x1[1]2COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))), ≥))



    We solved constraint (9) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (10)    (&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(+(x2[1], 1), 2)=x1[0]1&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[2]-(+(x2[1]1, 1), 2)=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1]1, 1), 2))), ≥))



    We solved constraint (10) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)) which results in the following constraint:

    (11)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(+(x2[1], 1), 2)=x1[0]1&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥1385_0_HALF_LE(0, -(+(x2[1], 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))



    We solved constraint (11) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (12)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]1-(+(x2[1], 1), 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1385_0_HALF_LE(TRUE, x2[1], x1[1])≥1385_0_HALF_LE(0, -(+(x2[1], 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))



    We simplified constraint (12) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (13)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), 0)=TRUE<=(-(x1[2], 2), 1)=TRUE>(-(+(+(x2[2], 1), 1), 2), 1)=TRUECOND_1385_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(0, -(+(+(x2[2], 1), 1), 2))∧(UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    ([2] + x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[2] + x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    ([2] + x2[2] ≥ 0∧x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)







For Pair 1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (19)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (19) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (20)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21 + (2)bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)







For Pair COND_1385_0_HALF_LE1(TRUE, x2, x1) → 1385_0_HALF_LE(+(x2, 1), -(x1, 2)) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)) which results in the following constraint:

    (25)    (&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]-(+(x2[1], 1), 2)=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]1-(x1[3], 2)=x1[0]1&&(>(x2[0]1, 0), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (25) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (26)    (>(x2[0], 0)=TRUE<=(x1[0], 1)=TRUE>(-(+(x2[0], 1), 2), 1)=TRUE<=(-(-(+(x2[0], 1), 2), 2), 1)=TRUECOND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥1385_0_HALF_LE(+(0, 1), -(-(+(x2[0], 1), 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (26) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (27)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (28)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (29)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[3] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (31)    ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



  • We consider the chain 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (33)    (&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]-(+(x2[1], 1), 2)=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (33) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (34)    (>(x2[0], 0)=TRUE<=(x1[0], 1)=TRUE>(-(+(x2[0], 1), 2), 1)=TRUE>(-(-(+(x2[0], 1), 2), 2), 1)=TRUECOND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, 0, -(+(x2[0], 1), 2))≥1385_0_HALF_LE(+(0, 1), -(-(+(x2[0], 1), 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (34) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (35)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (36)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (36) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (37)    (x2[0] + [-1] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (37) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (38)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[-4] + x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    ([4] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)



  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0]), COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2)) which results in the following constraint:

    (42)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[0]-(x1[3]1, 2)=x1[0]&&(>(x2[0], 0), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (42) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (43)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(+(x2[2], 1), 1), 0)=TRUE<=(-(-(x1[2], 2), 2), 1)=TRUECOND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (43) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (44)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (44) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (45)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (45) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (46)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (47)    (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (48)    (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (49)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[2]2-(x1[3]1, 2)=x1[2]2&&(>(x2[2]2, -1), >(x1[2]2, 1))=TRUEx2[2]2=x2[3]2x1[2]2=x1[3]2COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (49) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (50)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(+(x2[2], 1), 1), -1)=TRUE>(-(-(x1[2], 2), 2), 1)=TRUECOND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1385_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-4] + x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (55)    (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-2] + x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (56)    (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE(&&(>(x2, 0), <=(x1, 1)), x2, x1)
    • (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
    • (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17 + bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)

  • COND_1385_0_HALF_LE(TRUE, x2, x1) → 1385_0_HALF_LE(0, -(+(x2, 1), 2))
    • ([2] + x2[2] ≥ 0∧x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(0, -(+(x2[1], 1), 2))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)

  • 1385_0_HALF_LE(x2, x1) → COND_1385_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
    • (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_21 + (2)bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)

  • COND_1385_0_HALF_LE1(TRUE, x2, x1) → 1385_0_HALF_LE(+(x2, 1), -(x1, 2))
    • ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
    • ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[(-1)bso_24] ≥ 0)
    • (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)
    • (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[(-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [2]   
POL(1385_0_HALF_LE(x1, x2)) = x2 + x1   
POL(COND_1385_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<=(x1, x2)) = [-1]   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(2) = [2]   
POL(COND_1385_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(-1) = [-1]   

The following pairs are in P>:

1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(&&(>(x2[0], 0), <=(x1[0], 1)), x2[0], x1[0])

The following pairs are in Pbound:

COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))

The following pairs are in P:

COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, -(+(x2[1], 1), 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1385_0_HALF_LE(TRUE, x2[1], x1[1]) → 1385_0_HALF_LE(0, x2[1] + 1 - 2)
(2): 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(x2[2] > -1 && x1[2] > 1, x2[2], x1[2])
(3): COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(x2[3] + 1, x1[3] - 2)

(1) -> (2), if (0* x2[2]x2[1] + 1 - 2* x1[2])


(3) -> (2), if (x2[3] + 1* x2[2]x1[3] - 2* x1[2])


(2) -> (3), if (x2[2] > -1 && x1[2] > 1x2[2]* x2[3]x1[2]* x1[3])



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(x2[3] + 1, x1[3] - 2)
(2): 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(x2[2] > -1 && x1[2] > 1, x2[2], x1[2])

(3) -> (2), if (x2[3] + 1* x2[2]x1[3] - 2* x1[2])


(2) -> (3), if (x2[2] > -1 && x1[2] > 1x2[2]* x2[3]x1[2]* x1[3])



The set Q is empty.

(12) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@22589c67 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]) which results in the following constraint:

    (1)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3])≥1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUECOND_1385_0_HALF_LE1(TRUE, x2[2], x1[2])≥NonInfC∧COND_1385_0_HALF_LE1(TRUE, x2[2], x1[2])≥1385_0_HALF_LE(+(x2[2], 1), -(x1[2], 2))∧(UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]) the following chains were created:
  • We consider the chain 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (7)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (7) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE1385_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1385_0_HALF_LE(x2[2], x1[2])≥COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
    • (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x1[2] + [bni_12]x2[2] ≥ 0∧[(-1)bso_13] ≥ 0)

  • 1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
    • (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [bni_14]x1[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [2]   
POL(COND_1385_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(1385_0_HALF_LE(x1, x2)) = x2 + x1   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(2) = [2]   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   

The following pairs are in P>:

1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])

The following pairs are in Pbound:

COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
1385_0_HALF_LE(x2[2], x1[2]) → COND_1385_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])

The following pairs are in P:

COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_1385_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1385_0_HALF_LE(x2[3] + 1, x1[3] - 2)


The set Q is empty.

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1385_0_HALF_LE(x2[0], x1[0]) → COND_1385_0_HALF_LE(x2[0] > 0 && x1[0] <= 1, x2[0], x1[0])


The set Q is empty.

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE