(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Log
public class Log{
public static int half(int x) {

int res = 0;

while (x > 1) {

x = x-2;
res++;

}

return res;

}


public static int log(int x) {

int res = 0;

while (x > 1) {

x = half(x);
res++;

}

return res;

}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
Log.main([Ljava/lang/String;)V: Graph of 141 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: Log.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 31 rules for P and 0 rules for R.


P rules:
616_0_log_ConstantStackPush(EOS(STATIC_616), i118, i118) → 618_0_log_LE(EOS(STATIC_618), i118, i118, 1)
618_0_log_LE(EOS(STATIC_618), i126, i126, matching1) → 622_0_log_LE(EOS(STATIC_622), i126, i126, 1) | =(matching1, 1)
622_0_log_LE(EOS(STATIC_622), i126, i126, matching1) → 626_0_log_Load(EOS(STATIC_626), i126) | &&(>(i126, 1), =(matching1, 1))
626_0_log_Load(EOS(STATIC_626), i126) → 630_0_log_InvokeMethod(EOS(STATIC_630), i126)
630_0_log_InvokeMethod(EOS(STATIC_630), i126) → 633_0_half_ConstantStackPush(EOS(STATIC_633), i126, i126)
633_0_half_ConstantStackPush(EOS(STATIC_633), i126, i126) → 639_0_half_Store(EOS(STATIC_639), i126, i126, 0)
639_0_half_Store(EOS(STATIC_639), i126, i126, matching1) → 641_0_half_Load(EOS(STATIC_641), i126, i126, 0) | =(matching1, 0)
641_0_half_Load(EOS(STATIC_641), i126, i126, matching1) → 667_0_half_Load(EOS(STATIC_667), i126, i126, 0) | =(matching1, 0)
667_0_half_Load(EOS(STATIC_667), i126, i129, i130) → 710_0_half_Load(EOS(STATIC_710), i126, i129, i130)
710_0_half_Load(EOS(STATIC_710), i126, i144, i145) → 755_0_half_Load(EOS(STATIC_755), i126, i144, i145)
755_0_half_Load(EOS(STATIC_755), i126, i159, i160) → 799_0_half_Load(EOS(STATIC_799), i126, i159, i160)
799_0_half_Load(EOS(STATIC_799), i126, i175, i176) → 802_0_half_ConstantStackPush(EOS(STATIC_802), i126, i175, i176, i175)
802_0_half_ConstantStackPush(EOS(STATIC_802), i126, i175, i176, i175) → 805_0_half_LE(EOS(STATIC_805), i126, i175, i176, i175, 1)
805_0_half_LE(EOS(STATIC_805), i126, i182, i176, i182, matching1) → 807_0_half_LE(EOS(STATIC_807), i126, i182, i176, i182, 1) | =(matching1, 1)
805_0_half_LE(EOS(STATIC_805), i126, i183, i176, i183, matching1) → 808_0_half_LE(EOS(STATIC_808), i126, i183, i176, i183, 1) | =(matching1, 1)
807_0_half_LE(EOS(STATIC_807), i126, i182, i176, i182, matching1) → 810_0_half_Load(EOS(STATIC_810), i126, i176) | &&(<=(i182, 1), =(matching1, 1))
810_0_half_Load(EOS(STATIC_810), i126, i176) → 814_0_half_Return(EOS(STATIC_814), i126, i176)
814_0_half_Return(EOS(STATIC_814), i126, i176) → 818_0_log_Store(EOS(STATIC_818), i176)
818_0_log_Store(EOS(STATIC_818), i176) → 822_0_log_Inc(EOS(STATIC_822), i176)
822_0_log_Inc(EOS(STATIC_822), i176) → 826_0_log_JMP(EOS(STATIC_826), i176)
826_0_log_JMP(EOS(STATIC_826), i176) → 832_0_log_Load(EOS(STATIC_832), i176)
832_0_log_Load(EOS(STATIC_832), i176) → 612_0_log_Load(EOS(STATIC_612), i176)
612_0_log_Load(EOS(STATIC_612), i118) → 616_0_log_ConstantStackPush(EOS(STATIC_616), i118, i118)
808_0_half_LE(EOS(STATIC_808), i126, i183, i176, i183, matching1) → 812_0_half_Load(EOS(STATIC_812), i126, i183, i176) | &&(>(i183, 1), =(matching1, 1))
812_0_half_Load(EOS(STATIC_812), i126, i183, i176) → 816_0_half_ConstantStackPush(EOS(STATIC_816), i126, i176, i183)
816_0_half_ConstantStackPush(EOS(STATIC_816), i126, i176, i183) → 820_0_half_IntArithmetic(EOS(STATIC_820), i126, i176, i183, 2)
820_0_half_IntArithmetic(EOS(STATIC_820), i126, i176, i183, matching1) → 824_0_half_Store(EOS(STATIC_824), i126, i176, -(i183, 2)) | &&(>(i183, 0), =(matching1, 2))
824_0_half_Store(EOS(STATIC_824), i126, i176, i184) → 828_0_half_Inc(EOS(STATIC_828), i126, i184, i176)
828_0_half_Inc(EOS(STATIC_828), i126, i184, i176) → 834_0_half_JMP(EOS(STATIC_834), i126, i184, +(i176, 1)) | >=(i176, 0)
834_0_half_JMP(EOS(STATIC_834), i126, i184, i189) → 838_0_half_Load(EOS(STATIC_838), i126, i184, i189)
838_0_half_Load(EOS(STATIC_838), i126, i184, i189) → 799_0_half_Load(EOS(STATIC_799), i126, i184, i189)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
805_0_half_LE(EOS(STATIC_805), x0, x1, x2, x1, 1) → 805_0_half_LE(EOS(STATIC_805), x2, x2, 0, x2, 1) | &&(>(x2, 1), <=(x1, 1))
805_0_half_LE(EOS(STATIC_805), x0, x1, x2, x1, 1) → 805_0_half_LE(EOS(STATIC_805), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(+(x2, 1), 0), >(x1, 1))
R rules:

Filtered ground terms:



805_0_half_LE(x1, x2, x3, x4, x5, x6) → 805_0_half_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_805_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_805_0_half_LE1(x1, x3, x4, x5, x6)
Cond_805_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_805_0_half_LE(x1, x3, x4, x5, x6)

Filtered duplicate args:



805_0_half_LE(x1, x2, x3, x4) → 805_0_half_LE(x1, x3, x4)
Cond_805_0_half_LE(x1, x2, x3, x4, x5) → Cond_805_0_half_LE(x1, x2, x4, x5)
Cond_805_0_half_LE1(x1, x2, x3, x4, x5) → Cond_805_0_half_LE1(x1, x2, x4, x5)

Filtered unneeded arguments:



Cond_805_0_half_LE(x1, x2, x3, x4) → Cond_805_0_half_LE(x1, x3)
Cond_805_0_half_LE1(x1, x2, x3, x4) → Cond_805_0_half_LE1(x1, x3, x4)
805_0_half_LE(x1, x2, x3) → 805_0_half_LE(x2, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
805_0_half_LE(x2, x1) → 805_0_half_LE(0, x2) | &&(>(x2, 1), <=(x1, 1))
805_0_half_LE(x2, x1) → 805_0_half_LE(+(x2, 1), -(x1, 2)) | &&(>(x2, -1), >(x1, 1))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE(&&(>(x2, 1), <=(x1, 1)), x2, x1)
COND_805_0_HALF_LE(TRUE, x2, x1) → 805_0_HALF_LE(0, x2)
805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
COND_805_0_HALF_LE1(TRUE, x2, x1) → 805_0_HALF_LE(+(x2, 1), -(x1, 2))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(x2[0] > 1 && x1[0] <= 1, x2[0], x1[0])
(1): COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
(2): 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(x2[2] > -1 && x1[2] > 1, x2[2], x1[2])
(3): COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(x2[3] + 1, x1[3] - 2)

(0) -> (1), if (x2[0] > 1 && x1[0] <= 1x2[0]* x2[1]x1[0]* x1[1])


(1) -> (0), if (0* x2[0]x2[1]* x1[0])


(1) -> (2), if (0* x2[2]x2[1]* x1[2])


(2) -> (3), if (x2[2] > -1 && x1[2] > 1x2[2]* x2[3]x1[2]* x1[3])


(3) -> (0), if (x2[3] + 1* x2[0]x1[3] - 2* x1[0])


(3) -> (2), if (x2[3] + 1* x2[2]x1[3] - 2* x1[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@4280e6ab Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 3 Max Right Steps: 2

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE(&&(>(x2, 1), <=(x1, 1)), x2, x1) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (1)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]805_0_HALF_LE(x2[0], x1[0])≥NonInfC∧805_0_HALF_LE(x2[0], x1[0])≥COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x2[0], 1)=TRUE<=(x1[0], 1)=TRUE805_0_HALF_LE(x2[0], x1[0])≥NonInfC∧805_0_HALF_LE(x2[0], x1[0])≥COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)


    (8)    (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_805_0_HALF_LE(TRUE, x2, x1) → 805_0_HALF_LE(0, x2) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (9)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1x2[1]=x1[0]1&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[0]2x2[1]1=x1[0]2&&(>(x2[0]2, 1), <=(x1[0]2, 1))=TRUEx2[0]2=x2[1]2x1[0]2=x1[1]2COND_805_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥805_0_HALF_LE(0, x2[1]1)∧(UIncreasing(805_0_HALF_LE(0, x2[1]1)), ≥))



    We solved constraint (9) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (10)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1x2[1]=x1[0]1&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[2]x2[1]1=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]COND_805_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥805_0_HALF_LE(0, x2[1]1)∧(UIncreasing(805_0_HALF_LE(0, x2[1]1)), ≥))



    We solved constraint (10) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (11)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1x2[1]=x1[0]1&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥805_0_HALF_LE(0, x2[1])∧(UIncreasing(805_0_HALF_LE(0, x2[1])), ≥))



    We solved constraint (11) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (12)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]1x2[1]=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥805_0_HALF_LE(0, x2[1])∧(UIncreasing(805_0_HALF_LE(0, x2[1])), ≥))



    We simplified constraint (12) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (13)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), 1)=TRUE<=(-(x1[2], 2), 1)=TRUECOND_805_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_805_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥805_0_HALF_LE(0, +(x2[2], 1))∧(UIncreasing(805_0_HALF_LE(0, x2[1])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    ([1] + x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    ([1] + x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_19 + bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)







For Pair 805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (19)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]805_0_HALF_LE(x2[2], x1[2])≥NonInfC∧805_0_HALF_LE(x2[2], x1[2])≥COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (19) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (20)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE805_0_HALF_LE(x2[2], x1[2])≥NonInfC∧805_0_HALF_LE(x2[2], x1[2])≥COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)







For Pair COND_805_0_HALF_LE1(TRUE, x2, x1) → 805_0_HALF_LE(+(x2, 1), -(x1, 2)) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (25)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]x2[1]=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]1-(x1[3], 2)=x1[0]1&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_805_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_805_0_HALF_LE1(TRUE, x2[3], x1[3])≥805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We solved constraint (25) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN).
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (26)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]x2[1]=x1[2]&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_805_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_805_0_HALF_LE1(TRUE, x2[3], x1[3])≥805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (26) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (27)    (>(x2[0], 1)=TRUE<=(x1[0], 1)=TRUE>(-(x2[0], 2), 1)=TRUECOND_805_0_HALF_LE1(TRUE, 0, x2[0])≥NonInfC∧COND_805_0_HALF_LE1(TRUE, 0, x2[0])≥805_0_HALF_LE(+(0, 1), -(x2[0], 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (27) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (28)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (28) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (29)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (29) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (30)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (31)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    ([2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (34)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[0]-(x1[3]1, 2)=x1[0]&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]COND_805_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_805_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (34) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (35)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(+(x2[2], 1), 1), 1)=TRUE<=(-(-(x1[2], 2), 2), 1)=TRUECOND_805_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_805_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥805_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)), 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2]), COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (41)    (&&(>(x2[2], -1), >(x1[2], 1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[2]2-(x1[3]1, 2)=x1[2]2&&(>(x2[2]2, -1), >(x1[2]2, 1))=TRUEx2[2]2=x2[3]2x1[2]2=x1[3]2COND_805_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_805_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (41) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (42)    (>(x2[2], -1)=TRUE>(x1[2], 1)=TRUE>(+(x2[2], 1), -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(+(x2[2], 1), 1), -1)=TRUE>(-(-(x1[2], 2), 2), 1)=TRUECOND_805_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_805_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥805_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (42) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (43)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (43) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (44)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (44) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (45)    (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-4] + x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (47)    (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-2] + x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (48)    (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE(&&(>(x2, 1), <=(x1, 1)), x2, x1)
    • (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
    • (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_805_0_HALF_LE(TRUE, x2, x1) → 805_0_HALF_LE(0, x2)
    • ([1] + x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_19 + bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)

  • 805_0_HALF_LE(x2, x1) → COND_805_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
    • (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)

  • COND_805_0_HALF_LE1(TRUE, x2, x1) → 805_0_HALF_LE(+(x2, 1), -(x1, 2))
    • ([2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(805_0_HALF_LE(x1, x2)) = [-1] + x2 + x1   
POL(COND_805_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(COND_805_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(-1) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(2) = [2]   

The following pairs are in P>:

COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))

The following pairs are in Pbound:

COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_805_0_HALF_LE1(TRUE, x2[3], x1[3]) → 805_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))

The following pairs are in P:

805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])
COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(x2[0] > 1 && x1[0] <= 1, x2[0], x1[0])
(1): COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
(2): 805_0_HALF_LE(x2[2], x1[2]) → COND_805_0_HALF_LE1(x2[2] > -1 && x1[2] > 1, x2[2], x1[2])

(1) -> (0), if (0* x2[0]x2[1]* x1[0])


(0) -> (1), if (x2[0] > 1 && x1[0] <= 1x2[0]* x2[1]x1[0]* x1[1])


(1) -> (2), if (0* x2[2]x2[1]* x1[2])



The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
(0): 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(x2[0] > 1 && x1[0] <= 1, x2[0], x1[0])

(1) -> (0), if (0* x2[0]x2[1]* x1[0])


(0) -> (1), if (x2[0] > 1 && x1[0] <= 1x2[0]* x2[1]x1[0]* x1[1])



The set Q is empty.

(11) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@1ca806a9 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]), 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]) which results in the following constraint:

    (1)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1x2[1]=x1[0]1COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[1], x1[1])≥805_0_HALF_LE(0, x2[1])∧(UIncreasing(805_0_HALF_LE(0, x2[1])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x2[0], 1)=TRUE<=(x1[0], 1)=TRUECOND_805_0_HALF_LE(TRUE, x2[0], x1[0])≥NonInfC∧COND_805_0_HALF_LE(TRUE, x2[0], x1[0])≥805_0_HALF_LE(0, x2[0])∧(UIncreasing(805_0_HALF_LE(0, x2[1])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)


    (8)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)







For Pair 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]) the following chains were created:
  • We consider the chain 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0]), COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1]) which results in the following constraint:

    (9)    (&&(>(x2[0], 1), <=(x1[0], 1))=TRUEx2[0]=x2[1]x1[0]=x1[1]805_0_HALF_LE(x2[0], x1[0])≥NonInfC∧805_0_HALF_LE(x2[0], x1[0])≥COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (9) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (10)    (>(x2[0], 1)=TRUE<=(x1[0], 1)=TRUE805_0_HALF_LE(x2[0], x1[0])≥NonInfC∧805_0_HALF_LE(x2[0], x1[0])≥COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[-3 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[-3 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[-3 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[1 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (15)    (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[1 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)


    (16)    (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[1 + (-1)bso_16] + x1[0] + [2]x2[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])
    • (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)
    • (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(805_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[3 + (-1)bso_14] ≥ 0)

  • 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])
    • (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[1 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
    • (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[1 + (-1)bso_16] + x1[0] + [2]x2[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_805_0_HALF_LE(x1, x2, x3)) = [2] + [-1]x2 + [-1]x1   
POL(805_0_HALF_LE(x1, x2)) = [-1] + [-1]x2 + x1   
POL(0) = 0   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])

The following pairs are in Pbound:

805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])

The following pairs are in P:

805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 805_0_HALF_LE(x2[0], x1[0]) → COND_805_0_HALF_LE(x2[0] > 1 && x1[0] <= 1, x2[0], x1[0])


The set Q is empty.

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_805_0_HALF_LE(TRUE, x2[1], x1[1]) → 805_0_HALF_LE(0, x2[1])


The set Q is empty.

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE