0 JBC
↳1 JBCToGraph (⇒, 650 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 1080 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 140 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class Log{
public static int half(int x) {
int res = 0;
while (x > 1) {
x = x-2;
res++;
}
return res;
}
public static int log(int x) {
int res = 0;
while (x > 1) {
x = half(x);
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 31 rules for P and 0 rules for R.
P rules:
616_0_log_ConstantStackPush(EOS(STATIC_616), i118, i118) → 618_0_log_LE(EOS(STATIC_618), i118, i118, 1)
618_0_log_LE(EOS(STATIC_618), i126, i126, matching1) → 622_0_log_LE(EOS(STATIC_622), i126, i126, 1) | =(matching1, 1)
622_0_log_LE(EOS(STATIC_622), i126, i126, matching1) → 626_0_log_Load(EOS(STATIC_626), i126) | &&(>(i126, 1), =(matching1, 1))
626_0_log_Load(EOS(STATIC_626), i126) → 630_0_log_InvokeMethod(EOS(STATIC_630), i126)
630_0_log_InvokeMethod(EOS(STATIC_630), i126) → 634_0_half_ConstantStackPush(EOS(STATIC_634), i126, i126)
634_0_half_ConstantStackPush(EOS(STATIC_634), i126, i126) → 639_0_half_Store(EOS(STATIC_639), i126, i126, 0)
639_0_half_Store(EOS(STATIC_639), i126, i126, matching1) → 641_0_half_Load(EOS(STATIC_641), i126, i126, 0) | =(matching1, 0)
641_0_half_Load(EOS(STATIC_641), i126, i126, matching1) → 667_0_half_Load(EOS(STATIC_667), i126, i126, 0) | =(matching1, 0)
667_0_half_Load(EOS(STATIC_667), i126, i129, i130) → 971_0_half_Load(EOS(STATIC_971), i126, i129, i130)
971_0_half_Load(EOS(STATIC_971), i126, i228, i229) → 1128_0_half_Load(EOS(STATIC_1128), i126, i228, i229)
1128_0_half_Load(EOS(STATIC_1128), i126, i322, i323) → 1274_0_half_Load(EOS(STATIC_1274), i126, i322, i323)
1274_0_half_Load(EOS(STATIC_1274), i126, i413, i414) → 1275_0_half_ConstantStackPush(EOS(STATIC_1275), i126, i413, i414, i413)
1275_0_half_ConstantStackPush(EOS(STATIC_1275), i126, i413, i414, i413) → 1277_0_half_LE(EOS(STATIC_1277), i126, i413, i414, i413, 1)
1277_0_half_LE(EOS(STATIC_1277), i126, i420, i414, i420, matching1) → 1279_0_half_LE(EOS(STATIC_1279), i126, i420, i414, i420, 1) | =(matching1, 1)
1277_0_half_LE(EOS(STATIC_1277), i126, i421, i414, i421, matching1) → 1280_0_half_LE(EOS(STATIC_1280), i126, i421, i414, i421, 1) | =(matching1, 1)
1279_0_half_LE(EOS(STATIC_1279), i126, i420, i414, i420, matching1) → 1281_0_half_Load(EOS(STATIC_1281), i126, i414) | &&(<=(i420, 1), =(matching1, 1))
1281_0_half_Load(EOS(STATIC_1281), i126, i414) → 1284_0_half_Return(EOS(STATIC_1284), i126, i414)
1284_0_half_Return(EOS(STATIC_1284), i126, i414) → 1287_0_log_Store(EOS(STATIC_1287), i414)
1287_0_log_Store(EOS(STATIC_1287), i414) → 1290_0_log_Inc(EOS(STATIC_1290), i414)
1290_0_log_Inc(EOS(STATIC_1290), i414) → 1294_0_log_JMP(EOS(STATIC_1294), i414)
1294_0_log_JMP(EOS(STATIC_1294), i414) → 1297_0_log_Load(EOS(STATIC_1297), i414)
1297_0_log_Load(EOS(STATIC_1297), i414) → 612_0_log_Load(EOS(STATIC_612), i414)
612_0_log_Load(EOS(STATIC_612), i118) → 616_0_log_ConstantStackPush(EOS(STATIC_616), i118, i118)
1280_0_half_LE(EOS(STATIC_1280), i126, i421, i414, i421, matching1) → 1282_0_half_Load(EOS(STATIC_1282), i126, i421, i414) | &&(>(i421, 1), =(matching1, 1))
1282_0_half_Load(EOS(STATIC_1282), i126, i421, i414) → 1285_0_half_ConstantStackPush(EOS(STATIC_1285), i126, i414, i421)
1285_0_half_ConstantStackPush(EOS(STATIC_1285), i126, i414, i421) → 1288_0_half_IntArithmetic(EOS(STATIC_1288), i126, i414, i421, 2)
1288_0_half_IntArithmetic(EOS(STATIC_1288), i126, i414, i421, matching1) → 1292_0_half_Store(EOS(STATIC_1292), i126, i414, -(i421, 2)) | &&(>(i421, 0), =(matching1, 2))
1292_0_half_Store(EOS(STATIC_1292), i126, i414, i424) → 1295_0_half_Inc(EOS(STATIC_1295), i126, i424, i414)
1295_0_half_Inc(EOS(STATIC_1295), i126, i424, i414) → 1299_0_half_JMP(EOS(STATIC_1299), i126, i424, +(i414, 1)) | >=(i414, 0)
1299_0_half_JMP(EOS(STATIC_1299), i126, i424, i428) → 1486_0_half_Load(EOS(STATIC_1486), i126, i424, i428)
1486_0_half_Load(EOS(STATIC_1486), i126, i424, i428) → 1274_0_half_Load(EOS(STATIC_1274), i126, i424, i428)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1277_0_half_LE(EOS(STATIC_1277), x0, x1, x2, x1, 1) → 1277_0_half_LE(EOS(STATIC_1277), x2, x2, 0, x2, 1) | &&(>(x2, 1), <=(x1, 1))
1277_0_half_LE(EOS(STATIC_1277), x0, x1, x2, x1, 1) → 1277_0_half_LE(EOS(STATIC_1277), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(+(x2, 1), 0), >(x1, 1))
R rules:
Filtered ground terms:
1277_0_half_LE(x1, x2, x3, x4, x5, x6) → 1277_0_half_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_1277_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1277_0_half_LE1(x1, x3, x4, x5, x6)
Cond_1277_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1277_0_half_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
1277_0_half_LE(x1, x2, x3, x4) → 1277_0_half_LE(x1, x3, x4)
Cond_1277_0_half_LE(x1, x2, x3, x4, x5) → Cond_1277_0_half_LE(x1, x2, x4, x5)
Cond_1277_0_half_LE1(x1, x2, x3, x4, x5) → Cond_1277_0_half_LE1(x1, x2, x4, x5)
Filtered unneeded arguments:
Cond_1277_0_half_LE(x1, x2, x3, x4) → Cond_1277_0_half_LE(x1, x3)
Cond_1277_0_half_LE1(x1, x2, x3, x4) → Cond_1277_0_half_LE1(x1, x3, x4)
1277_0_half_LE(x1, x2, x3) → 1277_0_half_LE(x2, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1277_0_half_LE(x2, x1) → 1277_0_half_LE(0, x2) | &&(>(x2, 1), <=(x1, 1))
1277_0_half_LE(x2, x1) → 1277_0_half_LE(+(x2, 1), -(x1, 2)) | &&(>(x2, -1), >(x1, 1))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1277_0_HALF_LE(x2, x1) → COND_1277_0_HALF_LE(&&(>(x2, 1), <=(x1, 1)), x2, x1)
COND_1277_0_HALF_LE(TRUE, x2, x1) → 1277_0_HALF_LE(0, x2)
1277_0_HALF_LE(x2, x1) → COND_1277_0_HALF_LE1(&&(>(x2, -1), >(x1, 1)), x2, x1)
COND_1277_0_HALF_LE1(TRUE, x2, x1) → 1277_0_HALF_LE(+(x2, 1), -(x1, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > 1 && x1[0] <= 1 ∧x2[0] →* x2[1]∧x1[0] →* x1[1])
(1) -> (0), if (0 →* x2[0]∧x2[1] →* x1[0])
(1) -> (2), if (0 →* x2[2]∧x2[1] →* x1[2])
(2) -> (3), if (x2[2] > -1 && x1[2] > 1 ∧x2[2] →* x2[3]∧x1[2] →* x1[3])
(3) -> (0), if (x2[3] + 1 →* x2[0]∧x1[3] - 2 →* x1[0])
(3) -> (2), if (x2[3] + 1 →* x2[2]∧x1[3] - 2 →* x1[2])
(1) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ 1277_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1277_0_HALF_LE(x2[0], x1[0])≥COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(2) (>(x2[0], 1)=TRUE∧<=(x1[0], 1)=TRUE ⇒ 1277_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1277_0_HALF_LE(x2[0], x1[0])≥COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(3) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(8) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(9) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧x2[1]=x1[0]1∧&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[0]2∧x2[1]1=x1[0]2∧&&(>(x2[0]2, 1), <=(x1[0]2, 1))=TRUE∧x2[0]2=x2[1]2∧x1[0]2=x1[1]2 ⇒ COND_1277_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1277_0_HALF_LE(0, x2[1]1)∧(UIncreasing(1277_0_HALF_LE(0, x2[1]1)), ≥))
(10) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧x2[1]=x1[0]1∧&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[2]∧x2[1]1=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ COND_1277_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥1277_0_HALF_LE(0, x2[1]1)∧(UIncreasing(1277_0_HALF_LE(0, x2[1]1)), ≥))
(11) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧x2[1]=x1[0]1∧&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥1277_0_HALF_LE(0, x2[1])∧(UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥))
(12) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]1∧x2[1]=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥1277_0_HALF_LE(0, x2[1])∧(UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥))
(13) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), 1)=TRUE∧<=(-(x1[2], 2), 1)=TRUE ⇒ COND_1277_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1277_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥1277_0_HALF_LE(0, +(x2[2], 1))∧(UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥))
(14) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(15) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(16) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [-1] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(17) ([1] + x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-2 + (-1)bso_20] + x1[2] ≥ 0)
(18) ([1] + x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-1)Bound*bni_19 + bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[(-1)bso_20] + x1[2] ≥ 0)
(19) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ 1277_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1277_0_HALF_LE(x2[2], x1[2])≥COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(20) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE ⇒ 1277_0_HALF_LE(x2[2], x1[2])≥NonInfC∧1277_0_HALF_LE(x2[2], x1[2])≥COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])∧(UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥))
(21) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(23) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(24) (x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧x2[1]=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]1∧-(x1[3], 2)=x1[0]1∧&&(>(x2[0]1, 1), <=(x1[0]1, 1))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3])≥1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(26) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧x2[1]=x1[2]∧&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3])≥1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(27) (>(x2[0], 1)=TRUE∧<=(x1[0], 1)=TRUE∧>(-(x2[0], 2), 1)=TRUE ⇒ COND_1277_0_HALF_LE1(TRUE, 0, x2[0])≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, 0, x2[0])≥1277_0_HALF_LE(+(0, 1), -(x2[0], 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥))
(28) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(29) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(30) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] + [-4] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(31) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(32) ([2] + x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(33) ([2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(34) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[0]∧-(x1[3]1, 2)=x1[0]∧&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ COND_1277_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(35) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), 1)=TRUE∧<=(-(-(x1[2], 2), 2), 1)=TRUE ⇒ COND_1277_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1277_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(36) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(37) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(38) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] ≥ 0∧[5] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(39) (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(40) (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(41) (&&(>(x2[2], -1), >(x1[2], 1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x2[2]1, -1), >(x1[2]1, 1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[2]2∧-(x1[3]1, 2)=x1[2]2∧&&(>(x2[2]2, -1), >(x1[2]2, 1))=TRUE∧x2[2]2=x2[3]2∧x1[2]2=x1[3]2 ⇒ COND_1277_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(42) (>(x2[2], -1)=TRUE∧>(x1[2], 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), -1)=TRUE∧>(-(-(x1[2], 2), 2), 1)=TRUE ⇒ COND_1277_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_1277_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥1277_0_HALF_LE(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(43) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(44) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(45) (x2[2] ≥ 0∧x1[2] + [-2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] + [-6] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(46) (x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-4] + x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(47) (x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧[-2] + x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(48) (x2[2] ≥ 0∧[4] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(1277_0_HALF_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_1277_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(COND_1277_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2
POL(-1) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
COND_1277_0_HALF_LE(TRUE, x2[1], x1[1]) → 1277_0_HALF_LE(0, x2[1])
1277_0_HALF_LE(x2[2], x1[2]) → COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
COND_1277_0_HALF_LE1(TRUE, x2[3], x1[3]) → 1277_0_HALF_LE(+(x2[3], 1), -(x1[3], 2))
1277_0_HALF_LE(x2[0], x1[0]) → COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])
COND_1277_0_HALF_LE(TRUE, x2[1], x1[1]) → 1277_0_HALF_LE(0, x2[1])
1277_0_HALF_LE(x2[2], x1[2]) → COND_1277_0_HALF_LE1(&&(>(x2[2], -1), >(x1[2], 1)), x2[2], x1[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (0 →* x2[0]∧x2[1] →* x1[0])
(0) -> (1), if (x2[0] > 1 && x1[0] <= 1 ∧x2[0] →* x2[1]∧x1[0] →* x1[1])
(1) -> (2), if (0 →* x2[2]∧x2[1] →* x1[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (0 →* x2[0]∧x2[1] →* x1[0])
(0) -> (1), if (x2[0] > 1 && x1[0] <= 1 ∧x2[0] →* x2[1]∧x1[0] →* x1[1])
(1) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧x2[1]=x1[0]1 ⇒ COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[1], x1[1])≥1277_0_HALF_LE(0, x2[1])∧(UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥))
(2) (>(x2[0], 1)=TRUE∧<=(x1[0], 1)=TRUE ⇒ COND_1277_0_HALF_LE(TRUE, x2[0], x1[0])≥NonInfC∧COND_1277_0_HALF_LE(TRUE, x2[0], x1[0])≥1277_0_HALF_LE(0, x2[0])∧(UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥))
(3) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1277_0_HALF_LE(0, x2[1])), ≥)∧[(-3)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x2[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (&&(>(x2[0], 1), <=(x1[0], 1))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ 1277_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1277_0_HALF_LE(x2[0], x1[0])≥COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(10) (>(x2[0], 1)=TRUE∧<=(x1[0], 1)=TRUE ⇒ 1277_0_HALF_LE(x2[0], x1[0])≥NonInfC∧1277_0_HALF_LE(x2[0], x1[0])≥COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])∧(UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥))
(11) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[(-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
(12) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[(-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
(13) (x2[0] + [-2] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[(-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
(14) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[4 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
(15) (x2[0] ≥ 0∧[1] + x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[4 + (-1)bso_16] + x1[0] + [2]x2[0] ≥ 0)
(16) (x2[0] ≥ 0∧[1] + [-1]x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] + [bni_15]x2[0] ≥ 0∧[4 + (-1)bso_16] + [-1]x1[0] + [2]x2[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1277_0_HALF_LE(x1, x2, x3)) = [-1] + [-1]x2 + [-1]x1
POL(1277_0_HALF_LE(x1, x2)) = [-1] + [-1]x2 + x1
POL(0) = 0
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<=(x1, x2)) = [-1]
1277_0_HALF_LE(x2[0], x1[0]) → COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])
1277_0_HALF_LE(x2[0], x1[0]) → COND_1277_0_HALF_LE(&&(>(x2[0], 1), <=(x1[0], 1)), x2[0], x1[0])
COND_1277_0_HALF_LE(TRUE, x2[1], x1[1]) → 1277_0_HALF_LE(0, x2[1])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |