0 JBC
↳1 JBCToGraph (⇒, 670 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 90 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 260 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 170 ms)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔, 0 ms)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
public class GCD4 {
public static int mod(int a, int b) {
while(a>=b && b > 0) {
a -= b;
}
return a;
}
public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 33 rules for P and 0 rules for R.
P rules:
983_0_gcd_LE(EOS(STATIC_983), i194, i202, i202) → 986_0_gcd_LE(EOS(STATIC_986), i194, i202, i202)
986_0_gcd_LE(EOS(STATIC_986), i194, i202, i202) → 989_0_gcd_Load(EOS(STATIC_989), i194, i202) | >(i202, 0)
989_0_gcd_Load(EOS(STATIC_989), i194, i202) → 992_0_gcd_LE(EOS(STATIC_992), i194, i202, i194)
992_0_gcd_LE(EOS(STATIC_992), i206, i202, i206) → 997_0_gcd_LE(EOS(STATIC_997), i206, i202, i206)
997_0_gcd_LE(EOS(STATIC_997), i206, i202, i206) → 1002_0_gcd_Load(EOS(STATIC_1002), i206, i202) | >(i206, 0)
1002_0_gcd_Load(EOS(STATIC_1002), i206, i202) → 1008_0_gcd_Store(EOS(STATIC_1008), i206, i202, i202)
1008_0_gcd_Store(EOS(STATIC_1008), i206, i202, i202) → 1011_0_gcd_Load(EOS(STATIC_1011), i206, i202, i202)
1011_0_gcd_Load(EOS(STATIC_1011), i206, i202, i202) → 1015_0_gcd_Load(EOS(STATIC_1015), i202, i202, i206)
1015_0_gcd_Load(EOS(STATIC_1015), i202, i202, i206) → 1018_0_gcd_InvokeMethod(EOS(STATIC_1018), i202, i206, i202)
1018_0_gcd_InvokeMethod(EOS(STATIC_1018), i202, i206, i202) → 1020_0_mod_Load(EOS(STATIC_1020), i202, i206, i202, i206, i202)
1020_0_mod_Load(EOS(STATIC_1020), i202, i206, i202, i206, i202) → 1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i206, i202)
1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i321, i202) → 1203_0_mod_Load(EOS(STATIC_1203), i202, i206, i202, i321, i202, i321)
1203_0_mod_Load(EOS(STATIC_1203), i202, i206, i202, i321, i202, i321) → 1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202)
1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202) → 1206_0_mod_LT(EOS(STATIC_1206), i202, i206, i202, i321, i202, i321, i202)
1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202) → 1207_0_mod_LT(EOS(STATIC_1207), i202, i206, i202, i321, i202, i321, i202)
1206_0_mod_LT(EOS(STATIC_1206), i202, i206, i202, i321, i202, i321, i202) → 1209_0_mod_Load(EOS(STATIC_1209), i202, i206, i202, i321) | <(i321, i202)
1209_0_mod_Load(EOS(STATIC_1209), i202, i206, i202, i321) → 1212_0_mod_Return(EOS(STATIC_1212), i202, i206, i202, i321)
1212_0_mod_Return(EOS(STATIC_1212), i202, i206, i202, i321) → 1214_0_gcd_Store(EOS(STATIC_1214), i202, i321)
1214_0_gcd_Store(EOS(STATIC_1214), i202, i321) → 1217_0_gcd_Load(EOS(STATIC_1217), i321, i202)
1217_0_gcd_Load(EOS(STATIC_1217), i321, i202) → 1220_0_gcd_Store(EOS(STATIC_1220), i321, i202)
1220_0_gcd_Store(EOS(STATIC_1220), i321, i202) → 1223_0_gcd_JMP(EOS(STATIC_1223), i202, i321)
1223_0_gcd_JMP(EOS(STATIC_1223), i202, i321) → 1227_0_gcd_Load(EOS(STATIC_1227), i202, i321)
1227_0_gcd_Load(EOS(STATIC_1227), i202, i321) → 979_0_gcd_Load(EOS(STATIC_979), i202, i321)
979_0_gcd_Load(EOS(STATIC_979), i194, i195) → 983_0_gcd_LE(EOS(STATIC_983), i194, i195, i195)
1207_0_mod_LT(EOS(STATIC_1207), i202, i206, i202, i321, i202, i321, i202) → 1210_0_mod_Load(EOS(STATIC_1210), i202, i206, i202, i321, i202) | >=(i321, i202)
1210_0_mod_Load(EOS(STATIC_1210), i202, i206, i202, i321, i202) → 1213_0_mod_LE(EOS(STATIC_1213), i202, i206, i202, i321, i202, i202)
1213_0_mod_LE(EOS(STATIC_1213), i202, i206, i202, i321, i202, i202) → 1216_0_mod_Load(EOS(STATIC_1216), i202, i206, i202, i321, i202) | >(i202, 0)
1216_0_mod_Load(EOS(STATIC_1216), i202, i206, i202, i321, i202) → 1219_0_mod_Load(EOS(STATIC_1219), i202, i206, i202, i202, i321)
1219_0_mod_Load(EOS(STATIC_1219), i202, i206, i202, i202, i321) → 1222_0_mod_IntArithmetic(EOS(STATIC_1222), i202, i206, i202, i202, i321, i202)
1222_0_mod_IntArithmetic(EOS(STATIC_1222), i202, i206, i202, i202, i321, i202) → 1224_0_mod_Store(EOS(STATIC_1224), i202, i206, i202, i202, -(i321, i202)) | >(i202, 0)
1224_0_mod_Store(EOS(STATIC_1224), i202, i206, i202, i202, i323) → 1229_0_mod_JMP(EOS(STATIC_1229), i202, i206, i202, i323, i202)
1229_0_mod_JMP(EOS(STATIC_1229), i202, i206, i202, i323, i202) → 1371_0_mod_Load(EOS(STATIC_1371), i202, i206, i202, i323, i202)
1371_0_mod_Load(EOS(STATIC_1371), i202, i206, i202, i323, i202) → 1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i323, i202)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, x2, x0, x2, x0) → 1204_0_mod_LT(EOS(STATIC_1204), x2, x0, x2, x0, x2, x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, x2, x0, x2, x0) → 1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, -(x2, x0), x0, -(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Filtered ground terms:
1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → 1204_0_mod_LT(x2, x3, x4, x5, x6, x7, x8)
EOS(x1) → EOS
Cond_1204_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1204_0_mod_LT1(x1, x3, x4, x5, x6, x7, x8, x9)
Cond_1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1204_0_mod_LT(x1, x3, x4, x5, x6, x7, x8, x9)
Filtered duplicate args:
1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7) → 1204_0_mod_LT(x2, x6, x7)
Cond_1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_1204_0_mod_LT(x1, x3, x7, x8)
Cond_1204_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_1204_0_mod_LT1(x1, x3, x7, x8)
Filtered unneeded arguments:
Cond_1204_0_mod_LT(x1, x2, x3, x4) → Cond_1204_0_mod_LT(x1, x3, x4)
Cond_1204_0_mod_LT1(x1, x2, x3, x4) → Cond_1204_0_mod_LT1(x1, x3, x4)
1204_0_mod_LT(x1, x2, x3) → 1204_0_mod_LT(x2, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1204_0_mod_LT(x2, x0) → 1204_0_mod_LT(x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
1204_0_mod_LT(x2, x0) → 1204_0_mod_LT(-(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0)
COND_1204_0_MOD_LT(TRUE, x2, x0) → 1204_0_MOD_LT(x0, x2)
1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0)
COND_1204_0_MOD_LT1(TRUE, x2, x0) → 1204_0_MOD_LT(-(x2, x0), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0 ∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] →* x2[0]∧x2[1] →* x0[0])
(1) -> (2), if (x0[1] →* x2[2]∧x2[1] →* x0[2])
(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0 ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (0), if (x2[3] - x0[3] →* x2[0]∧x0[3] →* x0[0])
(3) -> (2), if (x2[3] - x0[3] →* x2[2]∧x0[3] →* x0[2])
(1) (&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUE∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧<(x2[0], x0[0])=TRUE ⇒ 1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(8) ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(9) (x0[1]=x2[0]∧x2[1]=x0[0] ⇒ COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(10) (COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(11) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(12) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(13) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(14) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(15) (x0[1]=x2[2]∧x2[1]=x0[2] ⇒ COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(16) (COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(17) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(18) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(19) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)
(20) ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(21) (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 1204_0_MOD_LT(x2[2], x0[2])≥NonInfC∧1204_0_MOD_LT(x2[2], x0[2])≥COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))
(22) (>=(x2[2], x0[2])=TRUE∧>(x0[2], 0)=TRUE ⇒ 1204_0_MOD_LT(x2[2], x0[2])≥NonInfC∧1204_0_MOD_LT(x2[2], x0[2])≥COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))
(23) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)
(24) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)
(25) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)
(26) (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)
(27) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)Bound*bni_22 + bni_22] + [(2)bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[1 + (-1)bso_23] + x0[2] ≥ 0)
(28) (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3]∧-(x2[3], x0[3])=x2[0]∧x0[3]=x0[0] ⇒ COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))
(29) (>=(x2[2], x0[2])=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥1204_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))
(30) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(31) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(32) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(33) (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(34) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(35) (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3]∧-(x2[3], x0[3])=x2[2]1∧x0[3]=x0[2]1 ⇒ COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))
(36) (>=(x2[2], x0[2])=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥1204_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))
(37) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(38) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(39) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(40) (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(41) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1204_0_MOD_LT(x1, x2)) = [-1] + x2 + x1
POL(COND_1204_0_MOD_LT(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(COND_1204_0_MOD_LT1(x1, x2, x3)) = [-1] + x2 + [-1]x1
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])
1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] →* x2[0]∧x2[1] →* x0[0])
(3) -> (0), if (x2[3] - x0[3] →* x2[0]∧x0[3] →* x0[0])
(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0 ∧x2[0] →* x2[1]∧x0[0] →* x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] →* x2[0]∧x2[1] →* x0[0])
(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0 ∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) (&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUE∧x2[0]=x2[1]∧x0[0]=x0[1]∧x0[1]=x2[0]1∧x2[1]=x0[0]1 ⇒ COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧<(x2[0], x0[0])=TRUE ⇒ COND_1204_0_MOD_LT(TRUE, x2[0], x0[0])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[0], x0[0])≥1204_0_MOD_LT(x0[0], x2[0])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(7) (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(8) ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(9) (x0[1]=x2[0]∧x2[1]=x0[0]∧&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUE∧x2[0]=x2[1]1∧x0[0]=x0[1]1 ⇒ 1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))
(10) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧<(x2[0], x0[0])=TRUE ⇒ 1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))
(11) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)
(13) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)
(14) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)
(15) (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] ≥ 0)
(16) ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1204_0_MOD_LT(x1, x2, x3)) = [1] + [-1]x3 + x2 + [-1]x1
POL(1204_0_MOD_LT(x1, x2)) = [-1] + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |