0 JBC
↳1 JBCToGraph (⇒, 150 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 140 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 790 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 560 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 IDP
↳15 IDPNonInfProof (⇒, 340 ms)
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
public class GCD2 {
public static int mod(int a, int b) {
if (a == b) {
return 0;
}
while(a>b) {
a -= b;
}
return a;
}
public static int gcd(int a, int b) {
int tmp;
while(b != 0 && a >= 0 && b >= 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 43 rules for P and 0 rules for R.
P rules:
618_0_gcd_EQ(EOS(STATIC_618), i89, i96, i96) → 620_0_gcd_EQ(EOS(STATIC_620), i89, i96, i96)
620_0_gcd_EQ(EOS(STATIC_620), i89, i96, i96) → 623_0_gcd_Load(EOS(STATIC_623), i89, i96) | !(=(i96, 0))
623_0_gcd_Load(EOS(STATIC_623), i89, i96) → 626_0_gcd_LT(EOS(STATIC_626), i89, i96, i89)
626_0_gcd_LT(EOS(STATIC_626), i89, i96, i89) → 630_0_gcd_Load(EOS(STATIC_630), i89, i96) | >=(i89, 0)
630_0_gcd_Load(EOS(STATIC_630), i89, i96) → 635_0_gcd_LT(EOS(STATIC_635), i89, i96, i96)
635_0_gcd_LT(EOS(STATIC_635), i89, i103, i103) → 641_0_gcd_LT(EOS(STATIC_641), i89, i103, i103)
641_0_gcd_LT(EOS(STATIC_641), i89, i103, i103) → 651_0_gcd_Load(EOS(STATIC_651), i89, i103) | >=(i103, 0)
651_0_gcd_Load(EOS(STATIC_651), i89, i103) → 655_0_gcd_Store(EOS(STATIC_655), i89, i103, i103)
655_0_gcd_Store(EOS(STATIC_655), i89, i103, i103) → 659_0_gcd_Load(EOS(STATIC_659), i89, i103, i103)
659_0_gcd_Load(EOS(STATIC_659), i89, i103, i103) → 664_0_gcd_Load(EOS(STATIC_664), i103, i103, i89)
664_0_gcd_Load(EOS(STATIC_664), i103, i103, i89) → 668_0_gcd_InvokeMethod(EOS(STATIC_668), i103, i89, i103)
668_0_gcd_InvokeMethod(EOS(STATIC_668), i103, i89, i103) → 670_0_mod_Load(EOS(STATIC_670), i103, i89, i103, i89, i103)
670_0_mod_Load(EOS(STATIC_670), i103, i89, i103, i89, i103) → 672_0_mod_Load(EOS(STATIC_672), i103, i89, i103, i89, i103, i89)
672_0_mod_Load(EOS(STATIC_672), i103, i89, i103, i89, i103, i89) → 675_0_mod_NE(EOS(STATIC_675), i103, i89, i103, i89, i103, i89, i103)
675_0_mod_NE(EOS(STATIC_675), i103, i89, i103, i89, i103, i89, i103) → 677_0_mod_NE(EOS(STATIC_677), i103, i89, i103, i89, i103, i89, i103)
675_0_mod_NE(EOS(STATIC_675), i103, i103, i103, i103, i103, i103, i103) → 678_0_mod_NE(EOS(STATIC_678), i103, i103, i103, i103, i103, i103, i103)
677_0_mod_NE(EOS(STATIC_677), i103, i89, i103, i89, i103, i89, i103) → 681_0_mod_Load(EOS(STATIC_681), i103, i89, i103, i89, i103) | !(=(i89, i103))
681_0_mod_Load(EOS(STATIC_681), i103, i89, i103, i89, i103) → 743_0_mod_Load(EOS(STATIC_743), i103, i89, i103, i89, i103)
743_0_mod_Load(EOS(STATIC_743), i103, i89, i103, i107, i103) → 751_0_mod_Load(EOS(STATIC_751), i103, i89, i103, i107, i103, i107)
751_0_mod_Load(EOS(STATIC_751), i103, i89, i103, i107, i103, i107) → 754_0_mod_LE(EOS(STATIC_754), i103, i89, i103, i107, i103, i107, i103)
754_0_mod_LE(EOS(STATIC_754), i103, i89, i103, i107, i103, i107, i103) → 756_0_mod_LE(EOS(STATIC_756), i103, i89, i103, i107, i103, i107, i103)
754_0_mod_LE(EOS(STATIC_754), i103, i89, i103, i107, i103, i107, i103) → 757_0_mod_LE(EOS(STATIC_757), i103, i89, i103, i107, i103, i107, i103)
756_0_mod_LE(EOS(STATIC_756), i103, i89, i103, i107, i103, i107, i103) → 759_0_mod_Load(EOS(STATIC_759), i103, i89, i103, i107) | <=(i107, i103)
759_0_mod_Load(EOS(STATIC_759), i103, i89, i103, i107) → 764_0_mod_Return(EOS(STATIC_764), i103, i89, i103, i107)
764_0_mod_Return(EOS(STATIC_764), i103, i89, i103, i107) → 770_0_gcd_Store(EOS(STATIC_770), i103, i107)
770_0_gcd_Store(EOS(STATIC_770), i103, i107) → 776_0_gcd_Load(EOS(STATIC_776), i107, i103)
776_0_gcd_Load(EOS(STATIC_776), i107, i103) → 780_0_gcd_Store(EOS(STATIC_780), i107, i103)
780_0_gcd_Store(EOS(STATIC_780), i107, i103) → 784_0_gcd_JMP(EOS(STATIC_784), i103, i107)
784_0_gcd_JMP(EOS(STATIC_784), i103, i107) → 794_0_gcd_Load(EOS(STATIC_794), i103, i107)
794_0_gcd_Load(EOS(STATIC_794), i103, i107) → 614_0_gcd_Load(EOS(STATIC_614), i103, i107)
614_0_gcd_Load(EOS(STATIC_614), i89, i90) → 618_0_gcd_EQ(EOS(STATIC_618), i89, i90, i90)
757_0_mod_LE(EOS(STATIC_757), i103, i89, i103, i107, i103, i107, i103) → 762_0_mod_Load(EOS(STATIC_762), i103, i89, i103, i107, i103) | >(i107, i103)
762_0_mod_Load(EOS(STATIC_762), i103, i89, i103, i107, i103) → 766_0_mod_Load(EOS(STATIC_766), i103, i89, i103, i103, i107)
766_0_mod_Load(EOS(STATIC_766), i103, i89, i103, i103, i107) → 774_0_mod_IntArithmetic(EOS(STATIC_774), i103, i89, i103, i103, i107, i103)
774_0_mod_IntArithmetic(EOS(STATIC_774), i103, i89, i103, i103, i107, i103) → 778_0_mod_Store(EOS(STATIC_778), i103, i89, i103, i103, -(i107, i103)) | >(i103, 0)
778_0_mod_Store(EOS(STATIC_778), i103, i89, i103, i103, i113) → 782_0_mod_JMP(EOS(STATIC_782), i103, i89, i103, i113, i103)
782_0_mod_JMP(EOS(STATIC_782), i103, i89, i103, i113, i103) → 789_0_mod_Load(EOS(STATIC_789), i103, i89, i103, i113, i103)
789_0_mod_Load(EOS(STATIC_789), i103, i89, i103, i113, i103) → 743_0_mod_Load(EOS(STATIC_743), i103, i89, i103, i113, i103)
678_0_mod_NE(EOS(STATIC_678), i103, i103, i103, i103, i103, i103, i103) → 683_0_mod_ConstantStackPush(EOS(STATIC_683), i103, i103, i103, i103, i103)
683_0_mod_ConstantStackPush(EOS(STATIC_683), i103, i103, i103, i103, i103) → 687_0_mod_Return(EOS(STATIC_687), i103, i103, i103, i103, i103, 0)
687_0_mod_Return(EOS(STATIC_687), i103, i103, i103, i103, i103, matching1) → 692_0_gcd_Store(EOS(STATIC_692), i103, 0) | =(matching1, 0)
692_0_gcd_Store(EOS(STATIC_692), i103, matching1) → 717_0_gcd_Store(EOS(STATIC_717), i103, 0) | =(matching1, 0)
717_0_gcd_Store(EOS(STATIC_717), i103, i89) → 770_0_gcd_Store(EOS(STATIC_770), i103, i89)
R rules:
Combined rules. Obtained 4 conditional rules for P and 0 conditional rules for R.
P rules:
618_0_gcd_EQ(EOS(STATIC_618), x0, x1, x1) → 754_0_mod_LE(EOS(STATIC_754), x1, x0, x1, x0, x1, x0, x1) | &&(&&(>(x1, 0), >(+(x0, 1), 0)), !(=(x0, x1)))
754_0_mod_LE(EOS(STATIC_754), x0, x1, x0, x2, x0, x2, x0) → 618_0_gcd_EQ(EOS(STATIC_618), x0, x2, x2) | <=(x2, x0)
754_0_mod_LE(EOS(STATIC_754), x0, x1, x0, x2, x0, x2, x0) → 754_0_mod_LE(EOS(STATIC_754), x0, x1, x0, -(x2, x0), x0, -(x2, x0), x0) | &&(>(x2, x0), >(x0, 0))
618_0_gcd_EQ(EOS(STATIC_618), x0, x0, x0) → 618_0_gcd_EQ(EOS(STATIC_618), x0, 0, 0) | >(x0, 0)
R rules:
Filtered ground terms:
618_0_gcd_EQ(x1, x2, x3, x4) → 618_0_gcd_EQ(x2, x3, x4)
Cond_618_0_gcd_EQ1(x1, x2, x3, x4, x5) → Cond_618_0_gcd_EQ1(x1, x3, x4, x5)
754_0_mod_LE(x1, x2, x3, x4, x5, x6, x7, x8) → 754_0_mod_LE(x2, x3, x4, x5, x6, x7, x8)
Cond_754_0_mod_LE1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_754_0_mod_LE1(x1, x3, x4, x5, x6, x7, x8, x9)
Cond_754_0_mod_LE(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_754_0_mod_LE(x1, x3, x4, x5, x6, x7, x8, x9)
Cond_618_0_gcd_EQ(x1, x2, x3, x4, x5) → Cond_618_0_gcd_EQ(x1, x3, x4, x5)
Filtered duplicate args:
618_0_gcd_EQ(x1, x2, x3) → 618_0_gcd_EQ(x1, x3)
Cond_618_0_gcd_EQ(x1, x2, x3, x4) → Cond_618_0_gcd_EQ(x1, x2, x4)
754_0_mod_LE(x1, x2, x3, x4, x5, x6, x7) → 754_0_mod_LE(x2, x4, x6, x7)
Cond_754_0_mod_LE(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_754_0_mod_LE(x1, x3, x7, x8)
Cond_754_0_mod_LE1(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_754_0_mod_LE1(x1, x3, x7, x8)
Cond_618_0_gcd_EQ1(x1, x2, x3, x4) → Cond_618_0_gcd_EQ1(x1, x4)
Filtered unneeded arguments:
754_0_mod_LE(x1, x2, x3, x4) → 754_0_mod_LE(x2, x3, x4)
Cond_754_0_mod_LE(x1, x2, x3, x4) → Cond_754_0_mod_LE(x1, x3, x4)
Cond_754_0_mod_LE1(x1, x2, x3, x4) → Cond_754_0_mod_LE1(x1, x3, x4)
Combined rules. Obtained 4 conditional rules for P and 0 conditional rules for R.
P rules:
618_0_gcd_EQ(x0, x1) → 754_0_mod_LE(x0, x0, x1) | &&(&&(>(x1, 0), >(x0, -1)), !(=(x0, x1)))
754_0_mod_LE(x2, x2, x0) → 618_0_gcd_EQ(x0, x2) | <=(x2, x0)
754_0_mod_LE(x2, x2, x0) → 754_0_mod_LE(-(x2, x0), -(x2, x0), x0) | &&(>(x2, x0), >(x0, 0))
618_0_gcd_EQ(x0, x0) → 618_0_gcd_EQ(x0, 0) | >(x0, 0)
R rules:
Finished conversion. Obtained 8 rules for P and 0 rules for R. System has predefined symbols.
P rules:
618_0_GCD_EQ(x0, x1) → COND_618_0_GCD_EQ(&&(&&(>(x1, 0), >(x0, -1)), !(=(x0, x1))), x0, x1)
COND_618_0_GCD_EQ(TRUE, x0, x1) → 754_0_MOD_LE(x0, x0, x1)
754_0_MOD_LE(x2, x2, x0) → COND_754_0_MOD_LE(<=(x2, x0), x2, x2, x0)
COND_754_0_MOD_LE(TRUE, x2, x2, x0) → 618_0_GCD_EQ(x0, x2)
754_0_MOD_LE(x2, x2, x0) → COND_754_0_MOD_LE1(&&(>(x2, x0), >(x0, 0)), x2, x2, x0)
COND_754_0_MOD_LE1(TRUE, x2, x2, x0) → 754_0_MOD_LE(-(x2, x0), -(x2, x0), x0)
618_0_GCD_EQ(x0, x0) → COND_618_0_GCD_EQ1(>(x0, 0), x0, x0)
COND_618_0_GCD_EQ1(TRUE, x0, x0) → 618_0_GCD_EQ(x0, 0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > 0 && x0[0] > -1 && !(x0[0] = x1[0]) ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (2), if (x0[1] →* x2[2]∧x1[1] →* x0[2])
(1) -> (4), if (x0[1] →* x2[4]∧x1[1] →* x0[4])
(2) -> (3), if (x2[2] <= x0[2] ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])
(3) -> (6), if (x0[3] →* x0[6]∧x2[3] →* x0[6])
(4) -> (5), if (x2[4] > x0[4] && x0[4] > 0 ∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(5) -> (2), if (x2[5] - x0[5] →* x2[2]∧x0[5] →* x0[2])
(5) -> (4), if (x2[5] - x0[5] →* x2[4]∧x0[5] →* x0[4])
(6) -> (7), if (x0[6] > 0 ∧x0[6] →* x0[7])
(7) -> (0), if (x0[7] →* x0[0]∧0 →* x1[0])
(7) -> (6), if (x0[7] →* x0[6]∧0 →* x0[6])
(1) (&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(3) (>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(4) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(6) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(7) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(8) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(9) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(10) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(11) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(12) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x0[0] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(13) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] ≥ 0)
(14) (x0[1]=x2[2]∧x1[1]=x0[2] ⇒ COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(15) (COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(16) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(17) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(18) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(19) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(20) (x0[1]=x2[4]∧x1[1]=x0[4] ⇒ COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(21) (COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(22) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(23) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(24) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(25) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_35] = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(26) (<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 754_0_MOD_LE(x2[2], x2[2], x0[2])≥NonInfC∧754_0_MOD_LE(x2[2], x2[2], x0[2])≥COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(27) (<=(x2[2], x0[2])=TRUE ⇒ 754_0_MOD_LE(x2[2], x2[2], x0[2])≥NonInfC∧754_0_MOD_LE(x2[2], x2[2], x0[2])≥COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(28) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] + [-1]x2[2] ≥ 0)
(29) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] + [-1]x2[2] ≥ 0)
(30) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] + [-1]x2[2] ≥ 0)
(31) (x0[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] ≥ 0)
(32) (x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [(-1)bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] ≥ 0)
(33) (x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_37] + [bni_37]x2[2] + [bni_37]x0[2] ≥ 0∧[(-1)bso_38] + x0[2] ≥ 0)
(34) (x0[3]=x0[0]∧x2[3]=x1[0] ⇒ COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(35) (COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(36) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(37) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(38) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(39) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧0 = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(40) (x0[3]=x0[6]∧x2[3]=x0[6] ⇒ COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(41) (COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x2[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x2[3])≥618_0_GCD_EQ(x2[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(42) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(43) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(44) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(45) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_39] = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(46) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 754_0_MOD_LE(x2[4], x2[4], x0[4])≥NonInfC∧754_0_MOD_LE(x2[4], x2[4], x0[4])≥COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])∧(UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥))
(47) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ 754_0_MOD_LE(x2[4], x2[4], x0[4])≥NonInfC∧754_0_MOD_LE(x2[4], x2[4], x0[4])≥COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])∧(UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥))
(48) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_41] + [bni_41]x0[4] ≥ 0∧[(-1)bso_42] ≥ 0)
(49) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_41] + [bni_41]x0[4] ≥ 0∧[(-1)bso_42] ≥ 0)
(50) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_41] + [bni_41]x0[4] ≥ 0∧[(-1)bso_42] ≥ 0)
(51) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_41] + [bni_41]x0[4] ≥ 0∧[(-1)bso_42] ≥ 0)
(52) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_41 + bni_41] + [bni_41]x0[4] ≥ 0∧[(-1)bso_42] ≥ 0)
(53) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5]∧-(x2[5], x0[5])=x2[2]∧x0[5]=x0[2] ⇒ COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(54) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥754_0_MOD_LE(-(x2[4], x0[4]), -(x2[4], x0[4]), x0[4])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(55) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(56) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(57) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(58) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(59) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43 + bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(60) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5]∧-(x2[5], x0[5])=x2[4]1∧x0[5]=x0[4]1 ⇒ COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(61) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥754_0_MOD_LE(-(x2[4], x0[4]), -(x2[4], x0[4]), x0[4])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(62) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(63) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(64) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(65) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(66) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_43 + bni_43] + [bni_43]x0[4] ≥ 0∧[(-1)bso_44] ≥ 0)
(67) (>(x0[6], 0)=TRUE∧x0[6]=x0[7] ⇒ 618_0_GCD_EQ(x0[6], x0[6])≥NonInfC∧618_0_GCD_EQ(x0[6], x0[6])≥COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])∧(UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥))
(68) (>(x0[6], 0)=TRUE ⇒ 618_0_GCD_EQ(x0[6], x0[6])≥NonInfC∧618_0_GCD_EQ(x0[6], x0[6])≥COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])∧(UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥))
(69) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥)∧[(-1)Bound*bni_45] + [bni_45]x0[6] ≥ 0∧[(-1)bso_46] ≥ 0)
(70) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥)∧[(-1)Bound*bni_45] + [bni_45]x0[6] ≥ 0∧[(-1)bso_46] ≥ 0)
(71) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥)∧[(-1)Bound*bni_45] + [bni_45]x0[6] ≥ 0∧[(-1)bso_46] ≥ 0)
(72) (x0[6] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])), ≥)∧[(-1)Bound*bni_45 + bni_45] + [bni_45]x0[6] ≥ 0∧[(-1)bso_46] ≥ 0)
(73) (>(x0[6], 0)=TRUE∧x0[6]=x0[7]∧x0[7]=x0[0]∧0=x1[0] ⇒ COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7])≥NonInfC∧COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7])≥618_0_GCD_EQ(x0[7], 0)∧(UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥))
(74) (>(x0[6], 0)=TRUE ⇒ COND_618_0_GCD_EQ1(TRUE, x0[6], x0[6])≥NonInfC∧COND_618_0_GCD_EQ1(TRUE, x0[6], x0[6])≥618_0_GCD_EQ(x0[6], 0)∧(UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥))
(75) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥)∧[(-1)Bound*bni_47] + [bni_47]x0[6] ≥ 0∧[(-1)bso_48] + x0[6] ≥ 0)
(76) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥)∧[(-1)Bound*bni_47] + [bni_47]x0[6] ≥ 0∧[(-1)bso_48] + x0[6] ≥ 0)
(77) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥)∧[(-1)Bound*bni_47] + [bni_47]x0[6] ≥ 0∧[(-1)bso_48] + x0[6] ≥ 0)
(78) (x0[6] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥)∧[(-1)Bound*bni_47 + bni_47] + [bni_47]x0[6] ≥ 0∧[1 + (-1)bso_48] + x0[6] ≥ 0)
(79) (>(x0[6], 0)=TRUE∧x0[6]=x0[7]∧x0[7]=x0[6]1∧0=x0[6]1 ⇒ COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7])≥NonInfC∧COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7])≥618_0_GCD_EQ(x0[7], 0)∧(UIncreasing(618_0_GCD_EQ(x0[7], 0)), ≥))
POL(TRUE) = 0
POL(FALSE) = [1]
POL(618_0_GCD_EQ(x1, x2)) = x2
POL(COND_618_0_GCD_EQ(x1, x2, x3)) = x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-1) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(754_0_MOD_LE(x1, x2, x3)) = x3 + [-1]x2 + x1
POL(COND_754_0_MOD_LE(x1, x2, x3, x4)) = x3
POL(<=(x1, x2)) = [-1]
POL(COND_754_0_MOD_LE1(x1, x2, x3, x4)) = x4
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_618_0_GCD_EQ1(x1, x2, x3)) = [-1]x3 + [2]x2
COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7]) → 618_0_GCD_EQ(x0[7], 0)
618_0_GCD_EQ(x0[0], x1[0]) → COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])
754_0_MOD_LE(x2[4], x2[4], x0[4]) → COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])
COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5]) → 754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])
618_0_GCD_EQ(x0[6], x0[6]) → COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])
COND_618_0_GCD_EQ1(TRUE, x0[7], x0[7]) → 618_0_GCD_EQ(x0[7], 0)
618_0_GCD_EQ(x0[0], x1[0]) → COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])
COND_618_0_GCD_EQ(TRUE, x0[1], x1[1]) → 754_0_MOD_LE(x0[1], x0[1], x1[1])
754_0_MOD_LE(x2[2], x2[2], x0[2]) → COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])
COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3]) → 618_0_GCD_EQ(x0[3], x2[3])
754_0_MOD_LE(x2[4], x2[4], x0[4]) → COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])
COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5]) → 754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])
618_0_GCD_EQ(x0[6], x0[6]) → COND_618_0_GCD_EQ1(>(x0[6], 0), x0[6], x0[6])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])
(0) -> (1), if (x1[0] > 0 && x0[0] > -1 && !(x0[0] = x1[0]) ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (2), if (x0[1] →* x2[2]∧x1[1] →* x0[2])
(5) -> (2), if (x2[5] - x0[5] →* x2[2]∧x0[5] →* x0[2])
(2) -> (3), if (x2[2] <= x0[2] ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(1) -> (4), if (x0[1] →* x2[4]∧x1[1] →* x0[4])
(5) -> (4), if (x2[5] - x0[5] →* x2[4]∧x0[5] →* x0[4])
(4) -> (5), if (x2[4] > x0[4] && x0[4] > 0 ∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(3) -> (6), if (x0[3] →* x0[6]∧x2[3] →* x0[6])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])
(0) -> (1), if (x1[0] > 0 && x0[0] > -1 && !(x0[0] = x1[0]) ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (2), if (x0[1] →* x2[2]∧x1[1] →* x0[2])
(5) -> (2), if (x2[5] - x0[5] →* x2[2]∧x0[5] →* x0[2])
(2) -> (3), if (x2[2] <= x0[2] ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(1) -> (4), if (x0[1] →* x2[4]∧x1[1] →* x0[4])
(5) -> (4), if (x2[5] - x0[5] →* x2[4]∧x0[5] →* x0[4])
(4) -> (5), if (x2[4] > x0[4] && x0[4] > 0 ∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5]∧-(x2[5], x0[5])=x2[2]∧x0[5]=x0[2] ⇒ COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(2) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥754_0_MOD_LE(-(x2[4], x0[4]), -(x2[4], x0[4]), x0[4])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(3) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(4) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(5) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(6) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29 + bni_29] + [bni_29]x0[4] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(7) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29 + (2)bni_29] + [bni_29]x0[4] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(8) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5]∧-(x2[5], x0[5])=x2[4]1∧x0[5]=x0[4]1 ⇒ COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5])≥754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(9) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥NonInfC∧COND_754_0_MOD_LE1(TRUE, x2[4], x2[4], x0[4])≥754_0_MOD_LE(-(x2[4], x0[4]), -(x2[4], x0[4]), x0[4])∧(UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥))
(10) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(11) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(12) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(13) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29 + bni_29] + [bni_29]x0[4] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(14) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])), ≥)∧[(-1)Bound*bni_29 + (2)bni_29] + [bni_29]x0[4] + [bni_29]x2[4] ≥ 0∧[(-1)bso_30] ≥ 0)
(15) (&&(>(x2[4], x0[4]), >(x0[4], 0))=TRUE∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 754_0_MOD_LE(x2[4], x2[4], x0[4])≥NonInfC∧754_0_MOD_LE(x2[4], x2[4], x0[4])≥COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])∧(UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥))
(16) (>(x2[4], x0[4])=TRUE∧>(x0[4], 0)=TRUE ⇒ 754_0_MOD_LE(x2[4], x2[4], x0[4])≥NonInfC∧754_0_MOD_LE(x2[4], x2[4], x0[4])≥COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])∧(UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥))
(17) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_31] + [bni_31]x0[4] + [bni_31]x2[4] ≥ 0∧[(-1)bso_32] + x0[4] ≥ 0)
(18) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_31] + [bni_31]x0[4] + [bni_31]x2[4] ≥ 0∧[(-1)bso_32] + x0[4] ≥ 0)
(19) (x2[4] + [-1] + [-1]x0[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_31] + [bni_31]x0[4] + [bni_31]x2[4] ≥ 0∧[(-1)bso_32] + x0[4] ≥ 0)
(20) (x2[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_31 + bni_31] + [(2)bni_31]x0[4] + [bni_31]x2[4] ≥ 0∧[(-1)bso_32] + x0[4] ≥ 0)
(21) (x2[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_31 + (3)bni_31] + [(2)bni_31]x0[4] + [bni_31]x2[4] ≥ 0∧[1 + (-1)bso_32] + x0[4] ≥ 0)
(22) (x0[3]=x0[0]∧x2[3]=x1[0] ⇒ COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(23) (COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(24) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(25) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(26) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(27) ((UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[bni_33] = 0∧0 = 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(28) (<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 754_0_MOD_LE(x2[2], x2[2], x0[2])≥NonInfC∧754_0_MOD_LE(x2[2], x2[2], x0[2])≥COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(29) (<=(x2[2], x0[2])=TRUE ⇒ 754_0_MOD_LE(x2[2], x2[2], x0[2])≥NonInfC∧754_0_MOD_LE(x2[2], x2[2], x0[2])≥COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(30) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [bni_35]x0[2] + [bni_35]x2[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(31) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [bni_35]x0[2] + [bni_35]x2[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(32) (x0[2] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [bni_35]x0[2] + [bni_35]x2[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(33) (x0[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [(2)bni_35]x2[2] + [bni_35]x0[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(34) (x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [(2)bni_35]x2[2] + [bni_35]x0[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(35) (x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_35] + [(-2)bni_35]x2[2] + [bni_35]x0[2] ≥ 0∧[(-1)bso_36] ≥ 0)
(36) (x0[1]=x2[2]∧x1[1]=x0[2] ⇒ COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(37) (COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(38) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(39) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(40) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(41) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(42) (x0[1]=x2[4]∧x1[1]=x0[4] ⇒ COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(43) (COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(44) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(45) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(46) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(47) ((UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[bni_37] = 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(48) (&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(49) (>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(50) (>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(51) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(52) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(53) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(54) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(55) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(56) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(57) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39 + bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(58) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39 + bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(59) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39 + bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(60) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_39 + (3)bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = [1]
POL(COND_754_0_MOD_LE1(x1, x2, x3, x4)) = x2
POL(754_0_MOD_LE(x1, x2, x3)) = x3 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(COND_754_0_MOD_LE(x1, x2, x3, x4)) = x4 + [2]x3 + [-1]x2
POL(618_0_GCD_EQ(x1, x2)) = x2 + x1
POL(<=(x1, x2)) = [-1]
POL(COND_618_0_GCD_EQ(x1, x2, x3)) = x3 + x2
POL(-1) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
754_0_MOD_LE(x2[4], x2[4], x0[4]) → COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])
COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5]) → 754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])
754_0_MOD_LE(x2[4], x2[4], x0[4]) → COND_754_0_MOD_LE1(&&(>(x2[4], x0[4]), >(x0[4], 0)), x2[4], x2[4], x0[4])
618_0_GCD_EQ(x0[0], x1[0]) → COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])
COND_754_0_MOD_LE1(TRUE, x2[5], x2[5], x0[5]) → 754_0_MOD_LE(-(x2[5], x0[5]), -(x2[5], x0[5]), x0[5])
COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3]) → 618_0_GCD_EQ(x0[3], x2[3])
754_0_MOD_LE(x2[2], x2[2], x0[2]) → COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])
COND_618_0_GCD_EQ(TRUE, x0[1], x1[1]) → 754_0_MOD_LE(x0[1], x0[1], x1[1])
618_0_GCD_EQ(x0[0], x1[0]) → COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])
(0) -> (1), if (x1[0] > 0 && x0[0] > -1 && !(x0[0] = x1[0]) ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (2), if (x0[1] →* x2[2]∧x1[1] →* x0[2])
(5) -> (2), if (x2[5] - x0[5] →* x2[2]∧x0[5] →* x0[2])
(2) -> (3), if (x2[2] <= x0[2] ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])
(0) -> (1), if (x1[0] > 0 && x0[0] > -1 && !(x0[0] = x1[0]) ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (2), if (x0[1] →* x2[2]∧x1[1] →* x0[2])
(2) -> (3), if (x2[2] <= x0[2] ∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(1) (<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3]∧x0[3]=x0[0]∧x2[3]=x1[0]∧&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x2[2]1∧x1[1]=x0[2]1∧<=(x2[2]1, x0[2]1)=TRUE∧x2[2]1=x2[3]1∧x0[2]1=x0[3]1 ⇒ COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[1], x1[1])≥754_0_MOD_LE(x0[1], x0[1], x1[1])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(2) (<=(x2[2], x0[2])=TRUE∧<=(x0[2], x2[2])=TRUE∧>(x2[2], 0)=TRUE∧>(x0[2], -1)=TRUE∧<(x0[2], x2[2])=TRUE ⇒ COND_618_0_GCD_EQ(TRUE, x0[2], x2[2])≥NonInfC∧COND_618_0_GCD_EQ(TRUE, x0[2], x2[2])≥754_0_MOD_LE(x0[2], x0[2], x2[2])∧(UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥))
(3) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [(-1)bni_24]x0[2] ≥ 0∧[-3 + (-1)bso_25] + [-2]x2[2] + [-1]x0[2] ≥ 0)
(4) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [(-1)bni_24]x0[2] ≥ 0∧[-3 + (-1)bso_25] + [-2]x2[2] + [-1]x0[2] ≥ 0)
(6) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x0[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [(-1)bni_24]x0[2] ≥ 0∧[-3 + (-1)bso_25] + [-2]x2[2] + [-1]x0[2] ≥ 0)
(7) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [(-1)bni_24]x0[2] ≥ 0∧[-3 + (-1)bso_25] + [-2]x2[2] + [-1]x0[2] ≥ 0)
(8) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1]x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x0[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(754_0_MOD_LE(x0[1], x0[1], x1[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [(-1)bni_24]x0[2] ≥ 0∧[-3 + (-1)bso_25] + [-2]x2[2] + [-1]x0[2] ≥ 0)
(9) (x0[1]=x2[2]∧x1[1]=x0[2]∧<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3]∧x0[3]=x0[0]∧x2[3]=x1[0]∧&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]1∧x1[0]=x1[1]1∧x0[1]1=x2[2]1∧x1[1]1=x0[2]1 ⇒ 618_0_GCD_EQ(x0[0], x1[0])≥NonInfC∧618_0_GCD_EQ(x0[0], x1[0])≥COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(10) (<=(x2[2], x0[2])=TRUE∧>(x2[2], 0)=TRUE∧>(x0[2], -1)=TRUE∧<(x0[2], x2[2])=TRUE ⇒ 618_0_GCD_EQ(x0[2], x2[2])≥NonInfC∧618_0_GCD_EQ(x0[2], x2[2])≥COND_618_0_GCD_EQ(&&(&&(>(x2[2], 0), >(x0[2], -1)), !(=(x0[2], x2[2]))), x0[2], x2[2])∧(UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥))
(11) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x0[2] ≥ 0)
(12) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x0[2] ≥ 0)
(14) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x0[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x0[2] ≥ 0)
(15) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x0[2] ≥ 0)
(16) (x0[2] + [-1]x2[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x0[2] ≥ 0∧x0[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x0[2] ≥ 0)
(17) (x0[2] ≥ 0∧x2[2] + [-1] ≥ 0∧x2[2] + x0[2] ≥ 0∧[-1] + x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[-1 + (-1)bso_27] + x2[2] + x0[2] ≥ 0)
(18) (x0[2] ≥ 0∧x2[2] ≥ 0∧[1] + x2[2] + x0[2] ≥ 0∧[-1] + x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[(-1)bso_27] + x2[2] + x0[2] ≥ 0)
(19) ([1] + x0[2] ≥ 0∧x2[2] ≥ 0∧[2] + x2[2] + x0[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] ≥ 0∧[1 + (-1)bso_27] + x2[2] + x0[2] ≥ 0)
(20) (&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x2[2]∧x1[1]=x0[2]∧<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]∧x0[2]=x0[3]∧x0[3]=x0[0]1∧x2[3]=x1[0]1∧&&(&&(>(x1[0]1, 0), >(x0[0]1, -1)), !(=(x0[0]1, x1[0]1)))=TRUE∧x0[0]1=x0[1]1∧x1[0]1=x1[1]1 ⇒ COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3])≥618_0_GCD_EQ(x0[3], x2[3])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(21) (<=(x0[0], x1[0])=TRUE∧>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧>(x0[0], 0)=TRUE∧>(x1[0], -1)=TRUE∧<(x0[0], x1[0])=TRUE∧<(x1[0], x0[0])=TRUE ⇒ COND_754_0_MOD_LE(TRUE, x0[0], x0[0], x1[0])≥NonInfC∧COND_754_0_MOD_LE(TRUE, x0[0], x0[0], x1[0])≥618_0_GCD_EQ(x1[0], x0[0])∧(UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥))
(22) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(23) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(25) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(27) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(29) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(30) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(31) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(32) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(33) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(34) (x1[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(35) (x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-2)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(36) ([1] + x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[2] + x0[0] + x1[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(618_0_GCD_EQ(x0[3], x2[3])), ≥)∧[(-2)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(37) (x0[3]=x0[0]∧x2[3]=x1[0]∧&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0])))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x2[2]∧x1[1]=x0[2]∧<=(x2[2], x0[2])=TRUE∧x2[2]=x2[3]1∧x0[2]=x0[3]1∧x0[3]1=x0[0]1∧x2[3]1=x1[0]1 ⇒ 754_0_MOD_LE(x2[2], x2[2], x0[2])≥NonInfC∧754_0_MOD_LE(x2[2], x2[2], x0[2])≥COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(38) (<=(x0[0], x1[0])=TRUE∧>(x1[0], 0)=TRUE∧>(x0[0], -1)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ 754_0_MOD_LE(x0[0], x0[0], x1[0])≥NonInfC∧754_0_MOD_LE(x0[0], x0[0], x1[0])≥COND_754_0_MOD_LE(<=(x0[0], x1[0]), x0[0], x0[0], x1[0])∧(UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥))
(39) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + x1[0] + x0[0] ≥ 0)
(40) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + x1[0] + x0[0] ≥ 0)
(42) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + x1[0] + x0[0] ≥ 0)
(43) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + x1[0] + x0[0] ≥ 0)
(44) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + x1[0] + x0[0] ≥ 0)
(45) (x1[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] + [bni_30]x1[0] ≥ 0∧[2 + (-1)bso_31] + [2]x0[0] + x1[0] ≥ 0)
(46) ([1] + x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] + [bni_30]x1[0] ≥ 0∧[3 + (-1)bso_31] + [2]x0[0] + x1[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [2]
POL(COND_618_0_GCD_EQ(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(754_0_MOD_LE(x1, x2, x3)) = [1] + x3 + x2 + [-1]x1
POL(618_0_GCD_EQ(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-1) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(COND_754_0_MOD_LE(x1, x2, x3, x4)) = [-1] + [-1]x2
POL(<=(x1, x2)) = [2]
COND_618_0_GCD_EQ(TRUE, x0[1], x1[1]) → 754_0_MOD_LE(x0[1], x0[1], x1[1])
618_0_GCD_EQ(x0[0], x1[0]) → COND_618_0_GCD_EQ(&&(&&(>(x1[0], 0), >(x0[0], -1)), !(=(x0[0], x1[0]))), x0[0], x1[0])
754_0_MOD_LE(x2[2], x2[2], x0[2]) → COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])
COND_618_0_GCD_EQ(TRUE, x0[1], x1[1]) → 754_0_MOD_LE(x0[1], x0[1], x1[1])
754_0_MOD_LE(x2[2], x2[2], x0[2]) → COND_754_0_MOD_LE(<=(x2[2], x0[2]), x2[2], x2[2], x0[2])
COND_754_0_MOD_LE(TRUE, x2[3], x2[3], x0[3]) → 618_0_GCD_EQ(x0[3], x2[3])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0])