0 JBC
↳1 JBCToGraph (⇒, 210 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 10 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 90 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 440 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPtoQDPProof (⇒, 0 ms)
↳12 QDP
↳13 UsableRulesProof (⇔, 0 ms)
↳14 QDP
↳15 Instantiation (⇔, 0 ms)
↳16 QDP
↳17 Induction-Processor (⇒, 200 ms)
↳18 AND
↳19 QDP
↳20 DependencyGraphProof (⇔, 0 ms)
↳21 TRUE
↳22 QTRS
↳23 QTRSRRRProof (⇔, 30 ms)
↳24 QTRS
↳25 QTRSRRRProof (⇔, 0 ms)
↳26 QTRS
↳27 QTRSRRRProof (⇔, 0 ms)
↳28 QTRS
↳29 RisEmptyProof (⇔, 0 ms)
↳30 YES
public class DivWithoutMinus{
// adaption of the algorithm from [Kolbe 95]
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = y;
int res = 0;
while (z > 0 && (y == 0 || y > 0 && x > 0)) {
if (y == 0) {
res++;
y = z;
}
else {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 27 rules for P and 0 rules for R.
P rules:
780_0_main_LE(EOS(STATIC_780), i73, i162, i175, i175) → 784_0_main_LE(EOS(STATIC_784), i73, i162, i175, i175)
784_0_main_LE(EOS(STATIC_784), i73, i162, i175, i175) → 788_0_main_Load(EOS(STATIC_788), i73, i162, i175) | >(i175, 0)
788_0_main_Load(EOS(STATIC_788), i73, i162, i175) → 791_0_main_EQ(EOS(STATIC_791), i73, i162, i175, i162)
791_0_main_EQ(EOS(STATIC_791), i73, i179, i175, i179) → 793_0_main_EQ(EOS(STATIC_793), i73, i179, i175, i179)
791_0_main_EQ(EOS(STATIC_791), i73, matching1, i175, matching2) → 794_0_main_EQ(EOS(STATIC_794), i73, 0, i175, 0) | &&(=(matching1, 0), =(matching2, 0))
793_0_main_EQ(EOS(STATIC_793), i73, i179, i175, i179) → 797_0_main_Load(EOS(STATIC_797), i73, i179, i175) | !(=(i179, 0))
797_0_main_Load(EOS(STATIC_797), i73, i179, i175) → 801_0_main_LE(EOS(STATIC_801), i73, i179, i175, i179)
801_0_main_LE(EOS(STATIC_801), i73, i186, i175, i186) → 806_0_main_LE(EOS(STATIC_806), i73, i186, i175, i186)
806_0_main_LE(EOS(STATIC_806), i73, i186, i175, i186) → 813_0_main_Load(EOS(STATIC_813), i73, i186, i175) | >(i186, 0)
813_0_main_Load(EOS(STATIC_813), i73, i186, i175) → 818_0_main_LE(EOS(STATIC_818), i73, i186, i175, i73)
818_0_main_LE(EOS(STATIC_818), i189, i186, i175, i189) → 824_0_main_LE(EOS(STATIC_824), i189, i186, i175, i189)
824_0_main_LE(EOS(STATIC_824), i189, i186, i175, i189) → 831_0_main_Load(EOS(STATIC_831), i189, i186, i175) | >(i189, 0)
831_0_main_Load(EOS(STATIC_831), i189, i186, i175) → 838_0_main_NE(EOS(STATIC_838), i189, i186, i175, i186)
838_0_main_NE(EOS(STATIC_838), i189, i186, i175, i186) → 840_0_main_Inc(EOS(STATIC_840), i189, i186, i175) | >(i186, 0)
840_0_main_Inc(EOS(STATIC_840), i189, i186, i175) → 842_0_main_Inc(EOS(STATIC_842), +(i189, -1), i186, i175) | >(i189, 0)
842_0_main_Inc(EOS(STATIC_842), i193, i186, i175) → 843_0_main_JMP(EOS(STATIC_843), i193, +(i186, -1), i175) | >(i186, 0)
843_0_main_JMP(EOS(STATIC_843), i193, i194, i175) → 848_0_main_Load(EOS(STATIC_848), i193, i194, i175)
848_0_main_Load(EOS(STATIC_848), i193, i194, i175) → 777_0_main_Load(EOS(STATIC_777), i193, i194, i175)
777_0_main_Load(EOS(STATIC_777), i73, i162, i163) → 780_0_main_LE(EOS(STATIC_780), i73, i162, i163, i163)
794_0_main_EQ(EOS(STATIC_794), i73, matching1, i175, matching2) → 798_0_main_Load(EOS(STATIC_798), i73, 0, i175) | &&(=(matching1, 0), =(matching2, 0))
798_0_main_Load(EOS(STATIC_798), i73, matching1, i175) → 802_0_main_NE(EOS(STATIC_802), i73, 0, i175, 0) | =(matching1, 0)
802_0_main_NE(EOS(STATIC_802), i73, matching1, i175, matching2) → 808_0_main_Inc(EOS(STATIC_808), i73, i175) | &&(=(matching1, 0), =(matching2, 0))
808_0_main_Inc(EOS(STATIC_808), i73, i175) → 815_0_main_Load(EOS(STATIC_815), i73, i175)
815_0_main_Load(EOS(STATIC_815), i73, i175) → 820_0_main_Store(EOS(STATIC_820), i73, i175, i175)
820_0_main_Store(EOS(STATIC_820), i73, i175, i175) → 825_0_main_JMP(EOS(STATIC_825), i73, i175, i175)
825_0_main_JMP(EOS(STATIC_825), i73, i175, i175) → 834_0_main_Load(EOS(STATIC_834), i73, i175, i175)
834_0_main_Load(EOS(STATIC_834), i73, i175, i175) → 777_0_main_Load(EOS(STATIC_777), i73, i175, i175)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
780_0_main_LE(EOS(STATIC_780), x0, x1, x2, x2) → 780_0_main_LE(EOS(STATIC_780), +(x0, -1), +(x1, -1), x2, x2) | &&(&&(>(x2, 0), >(x1, 0)), >(x0, 0))
780_0_main_LE(EOS(STATIC_780), x0, 0, x2, x2) → 780_0_main_LE(EOS(STATIC_780), x0, x2, x2, x2) | >(x2, 0)
R rules:
Filtered ground terms:
780_0_main_LE(x1, x2, x3, x4, x5) → 780_0_main_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_780_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_780_0_main_LE1(x1, x3, x5, x6)
Cond_780_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_780_0_main_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
780_0_main_LE(x1, x2, x3, x4) → 780_0_main_LE(x1, x2, x4)
Cond_780_0_main_LE(x1, x2, x3, x4, x5) → Cond_780_0_main_LE(x1, x2, x3, x5)
Cond_780_0_main_LE1(x1, x2, x3, x4) → Cond_780_0_main_LE1(x1, x2, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
780_0_main_LE(x0, x1, x2) → 780_0_main_LE(+(x0, -1), +(x1, -1), x2) | &&(&&(>(x2, 0), >(x1, 0)), >(x0, 0))
780_0_main_LE(x0, 0, x2) → 780_0_main_LE(x0, x2, x2) | >(x2, 0)
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
780_0_MAIN_LE(x0, x1, x2) → COND_780_0_MAIN_LE(&&(&&(>(x2, 0), >(x1, 0)), >(x0, 0)), x0, x1, x2)
COND_780_0_MAIN_LE(TRUE, x0, x1, x2) → 780_0_MAIN_LE(+(x0, -1), +(x1, -1), x2)
780_0_MAIN_LE(x0, 0, x2) → COND_780_0_MAIN_LE1(>(x2, 0), x0, 0, x2)
COND_780_0_MAIN_LE1(TRUE, x0, 0, x2) → 780_0_MAIN_LE(x0, x2, x2)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > 0 && x1[0] > 0 && x0[0] > 0 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] + -1 →* x1[0]∧x2[1] →* x2[0])
(1) -> (2), if (x0[1] + -1 →* x0[2]∧x1[1] + -1 →* 0∧x2[1] →* x2[2])
(2) -> (3), if (x2[2] > 0 ∧x0[2] →* x0[3]∧x2[2] →* x2[3])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0]∧x2[3] →* x2[0])
(3) -> (2), if (x0[3] →* x0[2]∧x2[3] →* 0∧x2[3] →* x2[2])
(1) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 780_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧780_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])∧(UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ 780_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧780_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])∧(UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(7) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(8) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(9) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1]∧+(x0[1], -1)=x0[0]1∧+(x1[1], -1)=x1[0]1∧x2[1]=x2[0]1 ⇒ COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])∧(UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(10) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_780_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥NonInfC∧COND_780_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥780_0_MAIN_LE(+(x0[0], -1), +(x1[0], -1), x2[0])∧(UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(11) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(13) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(14) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(15) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(16) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(17) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1]∧+(x0[1], -1)=x0[2]∧+(x1[1], -1)=0∧x2[1]=x2[2] ⇒ COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])∧(UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(18) (+(x1[0], -1)=0∧>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_780_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥NonInfC∧COND_780_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥780_0_MAIN_LE(+(x0[0], -1), +(x1[0], -1), x2[0])∧(UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(19) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(20) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(21) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(22) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(23) (x1[0] ≥ 0∧x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(24) (x1[0] ≥ 0∧x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[0] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(25) (>(x2[2], 0)=TRUE∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 780_0_MAIN_LE(x0[2], 0, x2[2])≥NonInfC∧780_0_MAIN_LE(x0[2], 0, x2[2])≥COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])∧(UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥))
(26) (>(x2[2], 0)=TRUE ⇒ 780_0_MAIN_LE(x0[2], 0, x2[2])≥NonInfC∧780_0_MAIN_LE(x0[2], 0, x2[2])≥COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])∧(UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥))
(27) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(28) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(29) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(30) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_23] = 0∧[bni_23 + (-1)Bound*bni_23] ≥ 0∧0 = 0∧[(-1)bso_24] ≥ 0)
(31) (x2[2] ≥ 0 ⇒ (UIncreasing(COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_23] = 0∧[bni_23 + (-1)Bound*bni_23] ≥ 0∧0 = 0∧[(-1)bso_24] ≥ 0)
(32) (x0[3]=x0[0]∧x2[3]=x1[0]∧x2[3]=x2[0] ⇒ COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥780_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(33) (COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥780_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(34) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(35) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(36) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(37) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧0 = 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(38) (x0[3]=x0[2]∧x2[3]=0∧x2[3]=x2[2] ⇒ COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥780_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(39) (COND_780_0_MAIN_LE1(TRUE, x0[3], 0, 0)≥NonInfC∧COND_780_0_MAIN_LE1(TRUE, x0[3], 0, 0)≥780_0_MAIN_LE(x0[3], 0, 0)∧(UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(40) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(41) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(42) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧[(-1)bso_26] ≥ 0)
(43) ((UIncreasing(780_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[bni_25] = 0∧0 = 0∧[(-1)bso_26] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(780_0_MAIN_LE(x1, x2, x3)) = [1] + x1
POL(COND_780_0_MAIN_LE(x1, x2, x3, x4)) = [1] + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_780_0_MAIN_LE1(x1, x2, x3, x4)) = [1] + [-1]x3 + x2
COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])
780_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])
COND_780_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 780_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])
780_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_780_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])
780_0_MAIN_LE(x0[2], 0, x2[2]) → COND_780_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])
COND_780_0_MAIN_LE1(TRUE, x0[3], 0, x2[3]) → 780_0_MAIN_LE(x0[3], x2[3], x2[3])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x1[0]∧x2[3] →* x2[0])
(3) -> (2), if (x0[3] →* x0[2]∧x2[3] →* 0∧x2[3] →* x2[2])
(2) -> (3), if (x2[2] > 0 ∧x0[2] →* x0[3]∧x2[2] →* x2[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if (x0[3] →* x0[2]∧x2[3] →* 0∧x2[3] →* x2[2])
(2) -> (3), if (x2[2] > 0 ∧x0[2] →* x0[3]∧x2[2] →* x2[3])
COND_780_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 780_0_MAIN_LE(x0[3], x2[3], x2[3])
780_0_MAIN_LE(x0[2], pos(01), x2[2]) → COND_780_0_MAIN_LE1(greater_int(x2[2], pos(01)), x0[2], pos(01), x2[2])
greater_int(pos(01), pos(01)) → false
greater_int(pos(01), neg(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(neg(01), neg(01)) → false
greater_int(pos(01), pos(s(y))) → false
greater_int(neg(01), pos(s(y))) → false
greater_int(pos(01), neg(s(y))) → true
greater_int(neg(01), neg(s(y))) → true
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(s(x)), neg(01)) → true
greater_int(neg(s(x)), neg(01)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
COND_780_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 780_0_MAIN_LE(x0[3], x2[3], x2[3])
780_0_MAIN_LE(x0[2], pos(01), x2[2]) → COND_780_0_MAIN_LE1(greater_int(x2[2], pos(01)), x0[2], pos(01), x2[2])
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
780_0_MAIN_LE(z0, pos(01), pos(01)) → COND_780_0_MAIN_LE1(greater_int(pos(01), pos(01)), z0, pos(01), pos(01))
COND_780_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 780_0_MAIN_LE(x0[3], x2[3], x2[3])
780_0_MAIN_LE(z0, pos(01), pos(01)) → COND_780_0_MAIN_LE1(greater_int(pos(01), pos(01)), z0, pos(01), pos(01))
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
POL(01) = 0
POL(780_0_MAIN_LE(x1, x2, x3)) = 1 + x1
POL(COND_780_0_MAIN_LE1(x1, x2, x3, x4)) = x1 + x2 + x4
POL(false_renamed) = 0
POL(greater_int(x1, x2)) = 1 + x1
POL(neg(x1)) = 1
POL(pos(x1)) = x1
POL(s(x1)) = 1
POL(true_renamed) = 1
POL(witness_sort[a9]) = 0
proof of internal # AProVE Commit ID: 0ed2840efdf9f991ffef2ebbd05a57b963a74414 marc 20110727 Partial correctness of the following Program [x, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, x', v22, v23, v24, v26, v27, v30, v31, v32, v34, v35, v19] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](witness_sort[a0], witness_sort[a0]) -> true equal_sort[a2](witness_sort[a2], witness_sort[a2]) -> true equal_sort[a9](pos(v36), pos(v37)) -> equal_sort[a10](v36, v37) equal_sort[a9](pos(v36), neg(v38)) -> false equal_sort[a9](pos(v36), witness_sort[a9]) -> false equal_sort[a9](neg(v39), pos(v40)) -> false equal_sort[a9](neg(v39), neg(v41)) -> equal_sort[a10](v39, v41) equal_sort[a9](neg(v39), witness_sort[a9]) -> false equal_sort[a9](witness_sort[a9], pos(v42)) -> false equal_sort[a9](witness_sort[a9], neg(v43)) -> false equal_sort[a9](witness_sort[a9], witness_sort[a9]) -> true equal_sort[a7](false_renamed, false_renamed) -> true equal_sort[a7](false_renamed, true_renamed) -> false equal_sort[a7](true_renamed, false_renamed) -> false equal_sort[a7](true_renamed, true_renamed) -> true equal_sort[a10](01, 01) -> true equal_sort[a10](01, s(v44)) -> false equal_sort[a10](s(v45), 01) -> false equal_sort[a10](s(v45), s(v46)) -> equal_sort[a0](v45, v46) equal_sort[a21](witness_sort[a21], witness_sort[a21]) -> true greater_int'(pos(01), pos(01)) -> true greater_int'(neg(01), pos(01)) -> true greater_int'(pos(s(x)), pos(01)) -> true greater_int'(neg(s(x')), pos(01)) -> true greater_int'(pos(01), pos(s(v22))) -> false greater_int'(pos(01), neg(v23)) -> false greater_int'(pos(01), witness_sort[a9]) -> false greater_int'(pos(s(v24)), pos(s(v26))) -> false greater_int'(pos(s(v24)), neg(v27)) -> false greater_int'(pos(s(v24)), witness_sort[a9]) -> false greater_int'(neg(01), pos(s(v30))) -> false greater_int'(neg(01), neg(v31)) -> false greater_int'(neg(01), witness_sort[a9]) -> false greater_int'(neg(s(v32)), pos(s(v34))) -> false greater_int'(neg(s(v32)), neg(v35)) -> false greater_int'(neg(s(v32)), witness_sort[a9]) -> false greater_int'(witness_sort[a9], v19) -> false greater_int(pos(01), pos(01)) -> false_renamed greater_int(neg(01), pos(01)) -> false_renamed greater_int(pos(s(x)), pos(01)) -> true_renamed greater_int(neg(s(x')), pos(01)) -> false_renamed greater_int(pos(01), pos(s(v22))) -> false_renamed greater_int(pos(01), neg(v23)) -> false_renamed greater_int(pos(01), witness_sort[a9]) -> false_renamed greater_int(pos(s(v24)), pos(s(v26))) -> false_renamed greater_int(pos(s(v24)), neg(v27)) -> false_renamed greater_int(pos(s(v24)), witness_sort[a9]) -> false_renamed greater_int(neg(01), pos(s(v30))) -> false_renamed greater_int(neg(01), neg(v31)) -> false_renamed greater_int(neg(01), witness_sort[a9]) -> false_renamed greater_int(neg(s(v32)), pos(s(v34))) -> false_renamed greater_int(neg(s(v32)), neg(v35)) -> false_renamed greater_int(neg(s(v32)), witness_sort[a9]) -> false_renamed greater_int(witness_sort[a9], v19) -> false_renamed using the following formula: z1:sort[a9].(z1=pos(01)->greater_int'(z1, z1)=true) could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT, 0 ms] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT, 0 ms] (5) Formula (6) Induction by data structure [EQUIVALENT, 0 ms] (7) AND (8) Formula (9) Symbolic evaluation [EQUIVALENT, 0 ms] (10) YES (11) Formula (12) Symbolic evaluation [EQUIVALENT, 0 ms] (13) YES (14) Formula (15) Symbolic evaluation [EQUIVALENT, 0 ms] (16) YES (17) Formula (18) Symbolic evaluation [EQUIVALENT, 0 ms] (19) YES ---------------------------------------- (0) Obligation: Formula: z1:sort[a9].(z1=pos(01)->greater_int'(z1, z1)=true) There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a9] generates the following cases: 1. Base Case: Formula: (witness_sort[a9]=pos(01)->greater_int'(witness_sort[a9], witness_sort[a9])=true) There are no hypotheses. 1. Step Case: Formula: n:sort[a10].(pos(n)=pos(01)->greater_int'(pos(n), pos(n))=true) There are no hypotheses. 1. Step Case: Formula: n:sort[a10].(neg(n)=pos(01)->greater_int'(neg(n), neg(n))=true) There are no hypotheses. ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: n:sort[a10].(pos(n)=pos(01)->greater_int'(pos(n), pos(n))=true) There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: n:sort[a10].(n=01->greater_int'(pos(n), pos(n))=true) ---------------------------------------- (5) Obligation: Formula: n:sort[a10].(n=01->greater_int'(pos(n), pos(n))=true) There are no hypotheses. ---------------------------------------- (6) Induction by data structure (EQUIVALENT) Induction by data structure sort[a10] generates the following cases: 1. Base Case: Formula: (01=01->greater_int'(pos(01), pos(01))=true) There are no hypotheses. 1. Step Case: Formula: n':sort[a0].(s(n')=01->greater_int'(pos(s(n')), pos(s(n')))=true) There are no hypotheses. ---------------------------------------- (7) Complex Obligation (AND) ---------------------------------------- (8) Obligation: Formula: (01=01->greater_int'(pos(01), pos(01))=true) There are no hypotheses. ---------------------------------------- (9) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (10) YES ---------------------------------------- (11) Obligation: Formula: n':sort[a0].(s(n')=01->greater_int'(pos(s(n')), pos(s(n')))=true) There are no hypotheses. ---------------------------------------- (12) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Formula: n:sort[a10].(neg(n)=pos(01)->greater_int'(neg(n), neg(n))=true) There are no hypotheses. ---------------------------------------- (15) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (16) YES ---------------------------------------- (17) Obligation: Formula: (witness_sort[a9]=pos(01)->greater_int'(witness_sort[a9], witness_sort[a9])=true) There are no hypotheses. ---------------------------------------- (18) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (19) YES
COND_780_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 780_0_MAIN_LE(x0[3], x2[3], x2[3])
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greater_int'(pos(01), pos(01)) → true
greater_int'(neg(01), pos(01)) → true
greater_int'(pos(s(x)), pos(01)) → true
greater_int'(neg(s(x')), pos(01)) → true
greater_int'(pos(01), pos(s(v22))) → false
greater_int'(pos(01), neg(v23)) → false
greater_int'(pos(01), witness_sort[a9]) → false
greater_int'(pos(s(v24)), pos(s(v26))) → false
greater_int'(pos(s(v24)), neg(v27)) → false
greater_int'(pos(s(v24)), witness_sort[a9]) → false
greater_int'(neg(01), pos(s(v30))) → false
greater_int'(neg(01), neg(v31)) → false
greater_int'(neg(01), witness_sort[a9]) → false
greater_int'(neg(s(v32)), pos(s(v34))) → false
greater_int'(neg(s(v32)), neg(v35)) → false
greater_int'(neg(s(v32)), witness_sort[a9]) → false
greater_int'(witness_sort[a9], v19) → false
greater_int(pos(01), pos(01)) → false_renamed
greater_int(neg(01), pos(01)) → false_renamed
greater_int(pos(s(x)), pos(01)) → true_renamed
greater_int(neg(s(x')), pos(01)) → false_renamed
greater_int(pos(01), pos(s(v22))) → false_renamed
greater_int(pos(01), neg(v23)) → false_renamed
greater_int(pos(01), witness_sort[a9]) → false_renamed
greater_int(pos(s(v24)), pos(s(v26))) → false_renamed
greater_int(pos(s(v24)), neg(v27)) → false_renamed
greater_int(pos(s(v24)), witness_sort[a9]) → false_renamed
greater_int(neg(01), pos(s(v30))) → false_renamed
greater_int(neg(01), neg(v31)) → false_renamed
greater_int(neg(01), witness_sort[a9]) → false_renamed
greater_int(neg(s(v32)), pos(s(v34))) → false_renamed
greater_int(neg(s(v32)), neg(v35)) → false_renamed
greater_int(neg(s(v32)), witness_sort[a9]) → false_renamed
greater_int(witness_sort[a9], v19) → false_renamed
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](witness_sort[a0], witness_sort[a0]) → true
equal_sort[a2](witness_sort[a2], witness_sort[a2]) → true
equal_sort[a9](pos(v36), pos(v37)) → equal_sort[a10](v36, v37)
equal_sort[a9](pos(v36), neg(v38)) → false
equal_sort[a9](pos(v36), witness_sort[a9]) → false
equal_sort[a9](neg(v39), pos(v40)) → false
equal_sort[a9](neg(v39), neg(v41)) → equal_sort[a10](v39, v41)
equal_sort[a9](neg(v39), witness_sort[a9]) → false
equal_sort[a9](witness_sort[a9], pos(v42)) → false
equal_sort[a9](witness_sort[a9], neg(v43)) → false
equal_sort[a9](witness_sort[a9], witness_sort[a9]) → true
equal_sort[a7](false_renamed, false_renamed) → true
equal_sort[a7](false_renamed, true_renamed) → false
equal_sort[a7](true_renamed, false_renamed) → false
equal_sort[a7](true_renamed, true_renamed) → true
equal_sort[a10](01, 01) → true
equal_sort[a10](01, s(v44)) → false
equal_sort[a10](s(v45), 01) → false
equal_sort[a10](s(v45), s(v46)) → equal_sort[a0](v45, v46)
equal_sort[a21](witness_sort[a21], witness_sort[a21]) → true
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(01) = 0
POL(and(x1, x2)) = 2 + x1 + x2
POL(equal_bool(x1, x2)) = 1 + x1 + x2
POL(equal_sort[a0](x1, x2)) = 1 + 2·x1 + x2
POL(equal_sort[a10](x1, x2)) = 2 + 2·x1 + x2
POL(equal_sort[a21](x1, x2)) = 2 + 2·x1 + x2
POL(equal_sort[a2](x1, x2)) = 2·x1 + x2
POL(equal_sort[a7](x1, x2)) = 1 + x1 + 2·x2
POL(equal_sort[a9](x1, x2)) = 2 + 2·x1 + x2
POL(false) = 0
POL(false_renamed) = 0
POL(greater_int(x1, x2)) = x1 + 2·x2
POL(greater_int'(x1, x2)) = 1 + 2·x1 + 2·x2
POL(isa_false(x1)) = 1 + x1
POL(isa_true(x1)) = 1 + x1
POL(neg(x1)) = 2 + x1
POL(not(x1)) = 1 + 2·x1
POL(or(x1, x2)) = 2 + 2·x1 + x2
POL(pos(x1)) = x1
POL(s(x1)) = 2 + 2·x1
POL(true) = 1
POL(true_renamed) = 0
POL(witness_sort[a0]) = 2
POL(witness_sort[a21]) = 2
POL(witness_sort[a2]) = 1
POL(witness_sort[a9]) = 0
greater_int'(neg(01), pos(01)) → true
greater_int'(pos(s(x)), pos(01)) → true
greater_int'(neg(s(x')), pos(01)) → true
greater_int'(pos(01), pos(s(v22))) → false
greater_int'(pos(01), neg(v23)) → false
greater_int'(pos(01), witness_sort[a9]) → false
greater_int'(pos(s(v24)), pos(s(v26))) → false
greater_int'(pos(s(v24)), neg(v27)) → false
greater_int'(pos(s(v24)), witness_sort[a9]) → false
greater_int'(neg(01), pos(s(v30))) → false
greater_int'(neg(01), neg(v31)) → false
greater_int'(neg(01), witness_sort[a9]) → false
greater_int'(neg(s(v32)), pos(s(v34))) → false
greater_int'(neg(s(v32)), neg(v35)) → false
greater_int'(neg(s(v32)), witness_sort[a9]) → false
greater_int'(witness_sort[a9], v19) → false
greater_int(neg(01), pos(01)) → false_renamed
greater_int(pos(s(x)), pos(01)) → true_renamed
greater_int(neg(s(x')), pos(01)) → false_renamed
greater_int(pos(01), pos(s(v22))) → false_renamed
greater_int(pos(01), neg(v23)) → false_renamed
greater_int(pos(s(v24)), pos(s(v26))) → false_renamed
greater_int(pos(s(v24)), neg(v27)) → false_renamed
greater_int(pos(s(v24)), witness_sort[a9]) → false_renamed
greater_int(neg(01), pos(s(v30))) → false_renamed
greater_int(neg(01), neg(v31)) → false_renamed
greater_int(neg(01), witness_sort[a9]) → false_renamed
greater_int(neg(s(v32)), pos(s(v34))) → false_renamed
greater_int(neg(s(v32)), neg(v35)) → false_renamed
greater_int(neg(s(v32)), witness_sort[a9]) → false_renamed
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
equal_sort[a0](witness_sort[a0], witness_sort[a0]) → true
equal_sort[a2](witness_sort[a2], witness_sort[a2]) → true
equal_sort[a9](pos(v36), neg(v38)) → false
equal_sort[a9](pos(v36), witness_sort[a9]) → false
equal_sort[a9](neg(v39), pos(v40)) → false
equal_sort[a9](neg(v39), neg(v41)) → equal_sort[a10](v39, v41)
equal_sort[a9](neg(v39), witness_sort[a9]) → false
equal_sort[a9](witness_sort[a9], pos(v42)) → false
equal_sort[a9](witness_sort[a9], neg(v43)) → false
equal_sort[a9](witness_sort[a9], witness_sort[a9]) → true
equal_sort[a7](false_renamed, true_renamed) → false
equal_sort[a7](true_renamed, false_renamed) → false
equal_sort[a10](01, 01) → true
equal_sort[a10](01, s(v44)) → false
equal_sort[a10](s(v45), 01) → false
equal_sort[a10](s(v45), s(v46)) → equal_sort[a0](v45, v46)
equal_sort[a21](witness_sort[a21], witness_sort[a21]) → true
greater_int'(pos(01), pos(01)) → true
greater_int(pos(01), pos(01)) → false_renamed
greater_int(pos(01), witness_sort[a9]) → false_renamed
greater_int(witness_sort[a9], v19) → false_renamed
equal_bool(false, false) → true
not(false) → true
isa_false(false) → true
equal_sort[a9](pos(v36), pos(v37)) → equal_sort[a10](v36, v37)
equal_sort[a7](false_renamed, false_renamed) → true
equal_sort[a7](true_renamed, true_renamed) → true
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(01) = 0
POL(equal_bool(x1, x2)) = 1 + 2·x1 + 2·x2
POL(equal_sort[a10](x1, x2)) = 1 + x1 + x2
POL(equal_sort[a7](x1, x2)) = 2 + 2·x1 + x2
POL(equal_sort[a9](x1, x2)) = 2 + 2·x1 + x2
POL(false) = 0
POL(false_renamed) = 2
POL(greater_int(x1, x2)) = 1 + 2·x1 + x2
POL(greater_int'(x1, x2)) = 2·x1 + x2
POL(isa_false(x1)) = 1 + x1
POL(not(x1)) = 1 + 2·x1
POL(pos(x1)) = 2 + x1
POL(true) = 1
POL(true_renamed) = 2
POL(witness_sort[a9]) = 1
greater_int'(pos(01), pos(01)) → true
greater_int(pos(01), pos(01)) → false_renamed
greater_int(pos(01), witness_sort[a9]) → false_renamed
greater_int(witness_sort[a9], v19) → false_renamed
equal_sort[a9](pos(v36), pos(v37)) → equal_sort[a10](v36, v37)
equal_sort[a7](false_renamed, false_renamed) → true
equal_sort[a7](true_renamed, true_renamed) → true
equal_bool(false, false) → true
not(false) → true
isa_false(false) → true
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(equal_bool(x1, x2)) = 2 + 2·x1 + x2
POL(false) = 2
POL(isa_false(x1)) = 2 + 2·x1
POL(not(x1)) = 2 + 2·x1
POL(true) = 1
equal_bool(false, false) → true
not(false) → true
isa_false(false) → true