0 JBC
↳1 JBCToGraph (⇒, 300 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 10 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 90 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 340 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 IDPNonInfProof (⇒, 160 ms)
↳13 IDP
↳14 IDependencyGraphProof (⇔, 0 ms)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 IDP
↳19 IDPNonInfProof (⇒, 140 ms)
↳20 IDP
↳21 IDependencyGraphProof (⇔, 0 ms)
↳22 TRUE
public class DivMinus2 {
public static int div(int x, int y) {
int res = 0;
while (x >= y && y > 0) {
x = minus(x,y);
res = res + 1;
}
return res;
}
public static int minus(int x, int y) {
while (y != 0) {
if (y > 0) {
y--;
x--;
} else {
y++;
x++;
}
}
return x;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
div(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 31 rules for P and 0 rules for R.
P rules:
1019_0_div_Load(EOS(STATIC_1019), i220, i219, i220, i219) → 1021_0_div_LT(EOS(STATIC_1021), i220, i219, i220, i219, i220)
1021_0_div_LT(EOS(STATIC_1021), i220, i219, i220, i219, i220) → 1025_0_div_LT(EOS(STATIC_1025), i220, i219, i220, i219, i220)
1025_0_div_LT(EOS(STATIC_1025), i220, i219, i220, i219, i220) → 1029_0_div_Load(EOS(STATIC_1029), i220, i219, i220) | >=(i219, i220)
1029_0_div_Load(EOS(STATIC_1029), i220, i219, i220) → 1034_0_div_LE(EOS(STATIC_1034), i220, i219, i220, i220)
1034_0_div_LE(EOS(STATIC_1034), i230, i219, i230, i230) → 1040_0_div_LE(EOS(STATIC_1040), i230, i219, i230, i230)
1040_0_div_LE(EOS(STATIC_1040), i230, i219, i230, i230) → 1046_0_div_Load(EOS(STATIC_1046), i230, i219, i230) | >(i230, 0)
1046_0_div_Load(EOS(STATIC_1046), i230, i219, i230) → 1053_0_div_Load(EOS(STATIC_1053), i230, i230, i219)
1053_0_div_Load(EOS(STATIC_1053), i230, i230, i219) → 1059_0_div_InvokeMethod(EOS(STATIC_1059), i230, i230, i219, i230)
1059_0_div_InvokeMethod(EOS(STATIC_1059), i230, i230, i219, i230) → 1063_0_minus_Load(EOS(STATIC_1063), i230, i230, i219, i230, i219, i230)
1063_0_minus_Load(EOS(STATIC_1063), i230, i230, i219, i230, i219, i230) → 1081_0_minus_Load(EOS(STATIC_1081), i230, i230, i219, i230, i219, i230)
1081_0_minus_Load(EOS(STATIC_1081), i230, i230, i219, i230, i233, i234) → 1083_0_minus_EQ(EOS(STATIC_1083), i230, i230, i219, i230, i233, i234, i234)
1083_0_minus_EQ(EOS(STATIC_1083), i230, i230, i219, i230, i233, i239, i239) → 1085_0_minus_EQ(EOS(STATIC_1085), i230, i230, i219, i230, i233, i239, i239)
1083_0_minus_EQ(EOS(STATIC_1083), i230, i230, i219, i230, i233, matching1, matching2) → 1086_0_minus_EQ(EOS(STATIC_1086), i230, i230, i219, i230, i233, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
1085_0_minus_EQ(EOS(STATIC_1085), i230, i230, i219, i230, i233, i239, i239) → 1087_0_minus_Load(EOS(STATIC_1087), i230, i230, i219, i230, i233, i239) | >(i239, 0)
1087_0_minus_Load(EOS(STATIC_1087), i230, i230, i219, i230, i233, i239) → 1090_0_minus_LE(EOS(STATIC_1090), i230, i230, i219, i230, i233, i239, i239)
1090_0_minus_LE(EOS(STATIC_1090), i230, i230, i219, i230, i233, i239, i239) → 1093_0_minus_Inc(EOS(STATIC_1093), i230, i230, i219, i230, i233, i239) | >(i239, 0)
1093_0_minus_Inc(EOS(STATIC_1093), i230, i230, i219, i230, i233, i239) → 1096_0_minus_Inc(EOS(STATIC_1096), i230, i230, i219, i230, i233, +(i239, -1)) | >(i239, 0)
1096_0_minus_Inc(EOS(STATIC_1096), i230, i230, i219, i230, i233, i240) → 1099_0_minus_JMP(EOS(STATIC_1099), i230, i230, i219, i230, +(i233, -1), i240)
1099_0_minus_JMP(EOS(STATIC_1099), i230, i230, i219, i230, i241, i240) → 1103_0_minus_Load(EOS(STATIC_1103), i230, i230, i219, i230, i241, i240)
1103_0_minus_Load(EOS(STATIC_1103), i230, i230, i219, i230, i241, i240) → 1081_0_minus_Load(EOS(STATIC_1081), i230, i230, i219, i230, i241, i240)
1086_0_minus_EQ(EOS(STATIC_1086), i230, i230, i219, i230, i233, matching1, matching2) → 1089_0_minus_Load(EOS(STATIC_1089), i230, i230, i219, i230, i233) | &&(=(matching1, 0), =(matching2, 0))
1089_0_minus_Load(EOS(STATIC_1089), i230, i230, i219, i230, i233) → 1092_0_minus_Return(EOS(STATIC_1092), i230, i230, i219, i230, i233)
1092_0_minus_Return(EOS(STATIC_1092), i230, i230, i219, i230, i233) → 1095_0_div_Store(EOS(STATIC_1095), i230, i230, i233)
1095_0_div_Store(EOS(STATIC_1095), i230, i230, i233) → 1098_0_div_Load(EOS(STATIC_1098), i230, i233, i230)
1098_0_div_Load(EOS(STATIC_1098), i230, i233, i230) → 1101_0_div_ConstantStackPush(EOS(STATIC_1101), i230, i233, i230)
1101_0_div_ConstantStackPush(EOS(STATIC_1101), i230, i233, i230) → 1104_0_div_IntArithmetic(EOS(STATIC_1104), i230, i233, i230)
1104_0_div_IntArithmetic(EOS(STATIC_1104), i230, i233, i230) → 1106_0_div_Store(EOS(STATIC_1106), i230, i233, i230)
1106_0_div_Store(EOS(STATIC_1106), i230, i233, i230) → 1107_0_div_JMP(EOS(STATIC_1107), i230, i233, i230)
1107_0_div_JMP(EOS(STATIC_1107), i230, i233, i230) → 1110_0_div_Load(EOS(STATIC_1110), i230, i233, i230)
1110_0_div_Load(EOS(STATIC_1110), i230, i233, i230) → 1014_0_div_Load(EOS(STATIC_1014), i230, i233, i230)
1014_0_div_Load(EOS(STATIC_1014), i220, i219, i220) → 1019_0_div_Load(EOS(STATIC_1019), i220, i219, i220, i219)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1083_0_minus_EQ(EOS(STATIC_1083), x0, x0, x1, x0, x2, x3, x3) → 1083_0_minus_EQ(EOS(STATIC_1083), x0, x0, x1, x0, +(x2, -1), +(x3, -1), +(x3, -1)) | >(x3, 0)
1083_0_minus_EQ(EOS(STATIC_1083), x0, x0, x1, x0, x2, 0, 0) → 1083_0_minus_EQ(EOS(STATIC_1083), x0, x0, x2, x0, x2, x0, x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Filtered ground terms:
1083_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8) → 1083_0_minus_EQ(x2, x3, x4, x5, x6, x7, x8)
EOS(x1) → EOS
Cond_1083_0_minus_EQ1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1083_0_minus_EQ1(x1, x3, x4, x5, x6, x7)
Cond_1083_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1083_0_minus_EQ(x1, x3, x4, x5, x6, x7, x8, x9)
Filtered duplicate args:
1083_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7) → 1083_0_minus_EQ(x3, x4, x5, x7)
Cond_1083_0_minus_EQ(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_1083_0_minus_EQ(x1, x4, x5, x6, x8)
Cond_1083_0_minus_EQ1(x1, x2, x3, x4, x5, x6) → Cond_1083_0_minus_EQ1(x1, x4, x5, x6)
Filtered unneeded arguments:
Cond_1083_0_minus_EQ(x1, x2, x3, x4, x5) → Cond_1083_0_minus_EQ(x1, x3, x4, x5)
1083_0_minus_EQ(x1, x2, x3, x4) → 1083_0_minus_EQ(x2, x3, x4)
Cond_1083_0_minus_EQ1(x1, x2, x3, x4) → Cond_1083_0_minus_EQ1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1083_0_minus_EQ(x0, x2, x3) → 1083_0_minus_EQ(x0, +(x2, -1), +(x3, -1)) | >(x3, 0)
1083_0_minus_EQ(x0, x2, 0) → 1083_0_minus_EQ(x0, x2, x0) | &&(>=(x2, x0), >(x0, 0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1083_0_MINUS_EQ(x0, x2, x3) → COND_1083_0_MINUS_EQ(>(x3, 0), x0, x2, x3)
COND_1083_0_MINUS_EQ(TRUE, x0, x2, x3) → 1083_0_MINUS_EQ(x0, +(x2, -1), +(x3, -1))
1083_0_MINUS_EQ(x0, x2, 0) → COND_1083_0_MINUS_EQ1(&&(>=(x2, x0), >(x0, 0)), x0, x2, 0)
COND_1083_0_MINUS_EQ1(TRUE, x0, x2, 0) → 1083_0_MINUS_EQ(x0, x2, x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(1) -> (2), if (x0[1] →* x0[2]∧x2[1] + -1 →* x2[2]∧x3[1] + -1 →* 0)
(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0 ∧x0[2] →* x0[3]∧x2[2] →* x2[3])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x2[0]∧x0[3] →* x3[0])
(3) -> (2), if (x0[3] →* x0[2]∧x2[3] →* x2[2]∧x0[3] →* 0)
(1) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1] ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(2) (>(x3[0], 0)=TRUE ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(3) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] + [bni_20]x2[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[bni_20] = 0∧0 = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(7) (x3[0] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[bni_20] = 0∧0 = 0∧[(-2)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(8) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[0]1∧+(x2[1], -1)=x2[0]1∧+(x3[1], -1)=x3[0]1 ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(9) (>(x3[0], 0)=TRUE ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥1083_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(10) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(11) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(12) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(13) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(14) (x3[0] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(15) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[2]∧+(x2[1], -1)=x2[2]∧+(x3[1], -1)=0 ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(16) (>(x3[0], 0)=TRUE∧+(x3[0], -1)=0 ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥1083_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(17) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(18) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(19) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] + [bni_22]x2[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(20) (x3[0] + [-1] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(21) (x3[0] ≥ 0∧x3[0] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[bni_22] = 0∧0 = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(22) (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUE∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 1083_0_MINUS_EQ(x0[2], x2[2], 0)≥NonInfC∧1083_0_MINUS_EQ(x0[2], x2[2], 0)≥COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)∧(UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥))
(23) (>=(x2[2], x0[2])=TRUE∧>(x0[2], 0)=TRUE ⇒ 1083_0_MINUS_EQ(x0[2], x2[2], 0)≥NonInfC∧1083_0_MINUS_EQ(x0[2], x2[2], 0)≥COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)∧(UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥))
(24) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[-1 + (-1)bso_25] + x0[2] ≥ 0)
(25) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[-1 + (-1)bso_25] + x0[2] ≥ 0)
(26) (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[-1 + (-1)bso_25] + x0[2] ≥ 0)
(27) (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[-1 + (-1)bso_25] + x0[2] ≥ 0)
(28) (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] + x0[2] ≥ 0)
(29) (x0[3]=x0[0]∧x2[3]=x2[0]∧x0[3]=x3[0] ⇒ COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥1083_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(30) (COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥1083_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(31) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(32) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(33) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(34) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
(35) (x0[3]=x0[2]∧x2[3]=x2[2]∧x0[3]=0 ⇒ COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥NonInfC∧COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0)≥1083_0_MINUS_EQ(x0[3], x2[3], x0[3])∧(UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(36) (COND_1083_0_MINUS_EQ1(TRUE, 0, x2[3], 0)≥NonInfC∧COND_1083_0_MINUS_EQ1(TRUE, 0, x2[3], 0)≥1083_0_MINUS_EQ(0, x2[3], 0)∧(UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥))
(37) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(38) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(39) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧[1 + (-1)bso_27] ≥ 0)
(40) ((UIncreasing(1083_0_MINUS_EQ(x0[3], x2[3], x0[3])), ≥)∧[bni_26] = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1083_0_MINUS_EQ(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(COND_1083_0_MINUS_EQ(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_1083_0_MINUS_EQ1(x1, x2, x3, x4)) = [-1]x4 + x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
COND_1083_0_MINUS_EQ1(TRUE, x0[3], x2[3], 0) → 1083_0_MINUS_EQ(x0[3], x2[3], x0[3])
1083_0_MINUS_EQ(x0[2], x2[2], 0) → COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)
1083_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
1083_0_MINUS_EQ(x0[2], x2[2], 0) → COND_1083_0_MINUS_EQ1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x0[2], x2[2], 0)
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) -> (2), if (x0[1] →* x0[2]∧x2[1] + -1 →* x2[2]∧x3[1] + -1 →* 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[0]1∧+(x2[1], -1)=x2[0]1∧+(x3[1], -1)=x3[0]1 ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(2) (>(x3[0], 0)=TRUE ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥1083_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(3) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x3[0] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1] ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(9) (>(x3[0], 0)=TRUE ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(10) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (x3[0] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1083_0_MINUS_EQ(x1, x2, x3, x4)) = [-1] + x4
POL(1083_0_MINUS_EQ(x1, x2, x3)) = [-1] + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
1083_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
1083_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(3) -> (0), if (x0[3] →* x0[0]∧x2[3] →* x2[0]∧x0[3] →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if (x0[1] →* x0[0]∧x2[1] + -1 →* x2[0]∧x3[1] + -1 →* x3[0])
(0) -> (1), if (x3[0] > 0 ∧x0[0] →* x0[1]∧x2[0] →* x2[1]∧x3[0] →* x3[1])
(1) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1]∧x0[1]=x0[0]1∧+(x2[1], -1)=x2[0]1∧+(x3[1], -1)=x3[0]1 ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1])≥1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(2) (>(x3[0], 0)=TRUE ⇒ COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥NonInfC∧COND_1083_0_MINUS_EQ(TRUE, x0[0], x2[0], x3[0])≥1083_0_MINUS_EQ(x0[0], +(x2[0], -1), +(x3[0], -1))∧(UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥))
(3) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x3[0] ≥ 0 ⇒ (UIncreasing(1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x3[0] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (>(x3[0], 0)=TRUE∧x0[0]=x0[1]∧x2[0]=x2[1]∧x3[0]=x3[1] ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(9) (>(x3[0], 0)=TRUE ⇒ 1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥NonInfC∧1083_0_MINUS_EQ(x0[0], x2[0], x3[0])≥COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])∧(UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥))
(10) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (x3[0] ≥ 0 ⇒ (UIncreasing(COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]x3[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1083_0_MINUS_EQ(x1, x2, x3, x4)) = [-1] + x4
POL(1083_0_MINUS_EQ(x1, x2, x3)) = [-1] + x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
COND_1083_0_MINUS_EQ(TRUE, x0[1], x2[1], x3[1]) → 1083_0_MINUS_EQ(x0[1], +(x2[1], -1), +(x3[1], -1))
1083_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
1083_0_MINUS_EQ(x0[0], x2[0], x3[0]) → COND_1083_0_MINUS_EQ(>(x3[0], 0), x0[0], x2[0], x3[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer