0 JBC
↳1 JBCToGraph (⇒, 110 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 110 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 290 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class CountUpRound{
public static int round (int x) {
if (x % 2 == 0) return x;
else return x+1;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
y = round(y+1);
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 27 rules for P and 0 rules for R.
P rules:
313_0_main_Load(EOS(STATIC_313), i18, i47, i18) → 319_0_main_LE(EOS(STATIC_319), i18, i47, i18, i47)
319_0_main_LE(EOS(STATIC_319), i18, i47, i18, i47) → 333_0_main_LE(EOS(STATIC_333), i18, i47, i18, i47)
333_0_main_LE(EOS(STATIC_333), i18, i47, i18, i47) → 344_0_main_Load(EOS(STATIC_344), i18, i47) | >(i18, i47)
344_0_main_Load(EOS(STATIC_344), i18, i47) → 352_0_main_ConstantStackPush(EOS(STATIC_352), i18, i47)
352_0_main_ConstantStackPush(EOS(STATIC_352), i18, i47) → 362_0_main_IntArithmetic(EOS(STATIC_362), i18, i47, 1)
362_0_main_IntArithmetic(EOS(STATIC_362), i18, i47, matching1) → 371_0_main_InvokeMethod(EOS(STATIC_371), i18, +(i47, 1)) | &&(>=(i47, 0), =(matching1, 1))
371_0_main_InvokeMethod(EOS(STATIC_371), i18, i53) → 379_0_round_Load(EOS(STATIC_379), i18, i53, i53)
379_0_round_Load(EOS(STATIC_379), i18, i53, i53) → 398_0_round_ConstantStackPush(EOS(STATIC_398), i18, i53, i53, i53)
398_0_round_ConstantStackPush(EOS(STATIC_398), i18, i53, i53, i53) → 408_0_round_IntArithmetic(EOS(STATIC_408), i18, i53, i53, i53, 2)
408_0_round_IntArithmetic(EOS(STATIC_408), i18, i53, i53, i53, matching1) → 418_0_round_NE(EOS(STATIC_418), i18, i53, i53, %(i53, 2)) | =(matching1, 2)
418_0_round_NE(EOS(STATIC_418), i18, i53, i53, matching1) → 426_0_round_NE(EOS(STATIC_426), i18, i53, i53, 1) | =(matching1, 1)
418_0_round_NE(EOS(STATIC_418), i18, i53, i53, matching1) → 427_0_round_NE(EOS(STATIC_427), i18, i53, i53, 0) | =(matching1, 0)
426_0_round_NE(EOS(STATIC_426), i18, i53, i53, matching1) → 434_0_round_Load(EOS(STATIC_434), i18, i53, i53) | &&(>(1, 0), =(matching1, 1))
434_0_round_Load(EOS(STATIC_434), i18, i53, i53) → 442_0_round_ConstantStackPush(EOS(STATIC_442), i18, i53, i53)
442_0_round_ConstantStackPush(EOS(STATIC_442), i18, i53, i53) → 450_0_round_IntArithmetic(EOS(STATIC_450), i18, i53, i53, 1)
450_0_round_IntArithmetic(EOS(STATIC_450), i18, i53, i53, matching1) → 461_0_round_Return(EOS(STATIC_461), i18, i53, +(i53, 1)) | &&(>(i53, 0), =(matching1, 1))
461_0_round_Return(EOS(STATIC_461), i18, i53, i59) → 470_0_main_Store(EOS(STATIC_470), i18, i59)
470_0_main_Store(EOS(STATIC_470), i18, i59) → 482_0_main_JMP(EOS(STATIC_482), i18, i59)
482_0_main_JMP(EOS(STATIC_482), i18, i59) → 486_0_main_Load(EOS(STATIC_486), i18, i59)
486_0_main_Load(EOS(STATIC_486), i18, i59) → 306_0_main_Load(EOS(STATIC_306), i18, i59)
306_0_main_Load(EOS(STATIC_306), i18, i47) → 313_0_main_Load(EOS(STATIC_313), i18, i47, i18)
427_0_round_NE(EOS(STATIC_427), i18, i53, i53, matching1) → 436_0_round_Load(EOS(STATIC_436), i18, i53, i53) | =(matching1, 0)
436_0_round_Load(EOS(STATIC_436), i18, i53, i53) → 445_0_round_Return(EOS(STATIC_445), i18, i53, i53, i53)
445_0_round_Return(EOS(STATIC_445), i18, i53, i53, i53) → 453_0_main_Store(EOS(STATIC_453), i18, i53)
453_0_main_Store(EOS(STATIC_453), i18, i53) → 463_0_main_JMP(EOS(STATIC_463), i18, i53)
463_0_main_JMP(EOS(STATIC_463), i18, i53) → 477_0_main_Load(EOS(STATIC_477), i18, i53)
477_0_main_Load(EOS(STATIC_477), i18, i53) → 306_0_main_Load(EOS(STATIC_306), i18, i53)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
313_0_main_Load(EOS(STATIC_313), x0, x1, x0) → 313_0_main_Load(EOS(STATIC_313), x0, +(x1, 2), x0) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), =(1, %(+(x1, 1), 2)))
313_0_main_Load(EOS(STATIC_313), x0, x1, x0) → 313_0_main_Load(EOS(STATIC_313), x0, +(x1, 1), x0) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), =(0, %(+(x1, 1), 2)))
R rules:
Filtered ground terms:
313_0_main_Load(x1, x2, x3, x4) → 313_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_313_0_main_Load1(x1, x2, x3, x4, x5) → Cond_313_0_main_Load1(x1, x3, x4, x5)
Cond_313_0_main_Load(x1, x2, x3, x4, x5) → Cond_313_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
313_0_main_Load(x1, x2, x3) → 313_0_main_Load(x2, x3)
Cond_313_0_main_Load(x1, x2, x3, x4) → Cond_313_0_main_Load(x1, x3, x4)
Cond_313_0_main_Load1(x1, x2, x3, x4) → Cond_313_0_main_Load1(x1, x3, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
313_0_main_Load(x1, x0) → 313_0_main_Load(+(x1, 2), x0) | &&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2)))
313_0_main_Load(x1, x0) → 313_0_main_Load(+(x1, 1), x0) | &&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2)))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
313_0_MAIN_LOAD(x1, x0) → COND_313_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2))), x1, x0)
COND_313_0_MAIN_LOAD(TRUE, x1, x0) → 313_0_MAIN_LOAD(+(x1, 2), x0)
313_0_MAIN_LOAD(x1, x0) → COND_313_0_MAIN_LOAD1(&&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0)
COND_313_0_MAIN_LOAD1(TRUE, x1, x0) → 313_0_MAIN_LOAD(+(x1, 1), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && 1 = x1[0] + 1 % 2 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + 2 →* x1[0]∧x0[1] →* x0[0])
(1) -> (2), if (x1[1] + 2 →* x1[2]∧x0[1] →* x0[2])
(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2 ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] + 1 →* x1[0]∧x0[3] →* x0[0])
(3) -> (2), if (x1[3] + 1 →* x1[2]∧x0[3] →* x0[2])
(1) (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2)))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 313_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧313_0_MAIN_LOAD(x1[0], x0[0])≥COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])∧(UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥))
(2) (>(x1[0], -1)=TRUE∧<(x1[0], x0[0])=TRUE∧>=(1, %(+(x1[0], 1), 2))=TRUE∧<=(1, %(+(x1[0], 1), 2))=TRUE ⇒ 313_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧313_0_MAIN_LOAD(x1[0], x0[0])≥COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])∧(UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥))
(3) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(4) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(5) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] + [(2)bni_12]x0[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] + [(2)bni_12]x0[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(8) (COND_313_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_313_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥313_0_MAIN_LOAD(+(x1[1], 2), x0[1])∧(UIncreasing(313_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥))
(9) ((UIncreasing(313_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(313_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(313_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)
(12) ((UIncreasing(313_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(13) (&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2)))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 313_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧313_0_MAIN_LOAD(x1[2], x0[2])≥COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))
(14) (>(x1[2], -1)=TRUE∧<(x1[2], x0[2])=TRUE∧>=(0, %(+(x1[2], 1), 2))=TRUE∧<=(0, %(+(x1[2], 1), 2))=TRUE ⇒ 313_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧313_0_MAIN_LOAD(x1[2], x0[2])≥COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))
(15) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(16) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(17) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (x1[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(4)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[2] + [(2)bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(4)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[2] + [(2)bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(20) (COND_313_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_313_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥313_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(313_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))
(21) ((UIncreasing(313_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(22) ((UIncreasing(313_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(23) ((UIncreasing(313_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(24) ((UIncreasing(313_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(313_0_MAIN_LOAD(x1, x2)) = [2] + [2]x2 + [-1]x1
POL(COND_313_0_MAIN_LOAD(x1, x2, x3)) = [1] + [2]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<(x1, x2)) = [-1]
POL(=(x1, x2)) = [-1]
POL(1) = [1]
POL(+(x1, x2)) = x1 + x2
POL(2) = [2]
POL(COND_313_0_MAIN_LOAD1(x1, x2, x3)) = [2] + [2]x3 + [-1]x2
POL(0) = 0
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
313_0_MAIN_LOAD(x1[0], x0[0]) → COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])
COND_313_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 313_0_MAIN_LOAD(+(x1[1], 2), x0[1])
COND_313_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 313_0_MAIN_LOAD(+(x1[3], 1), x0[3])
313_0_MAIN_LOAD(x1[0], x0[0]) → COND_313_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])
313_0_MAIN_LOAD(x1[2], x0[2]) → COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])
313_0_MAIN_LOAD(x1[2], x0[2]) → COND_313_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer