(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: AProVEMath
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {

/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
AProVEMath.main([Ljava/lang/String;)V: Graph of 235 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: AProVEMath.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 26 rules for P and 0 rules for R.


P rules:
665_0_power_LE(EOS(STATIC_665), i145, i145) → 668_0_power_LE(EOS(STATIC_668), i145, i145)
668_0_power_LE(EOS(STATIC_668), i145, i145) → 672_0_power_Load(EOS(STATIC_672), i145) | >(i145, 0)
672_0_power_Load(EOS(STATIC_672), i145) → 676_0_power_ConstantStackPush(EOS(STATIC_676), i145, i145)
676_0_power_ConstantStackPush(EOS(STATIC_676), i145, i145) → 681_0_power_IntArithmetic(EOS(STATIC_681), i145, i145, 2)
681_0_power_IntArithmetic(EOS(STATIC_681), i145, i145, matching1) → 686_0_power_ConstantStackPush(EOS(STATIC_686), i145) | =(matching1, 2)
686_0_power_ConstantStackPush(EOS(STATIC_686), i145) → 690_0_power_NE(EOS(STATIC_690), i145)
690_0_power_NE(EOS(STATIC_690), i145) → 692_0_power_NE(EOS(STATIC_692), i145)
690_0_power_NE(EOS(STATIC_690), i145) → 693_0_power_NE(EOS(STATIC_693), i145)
692_0_power_NE(EOS(STATIC_692), i145) → 695_0_power_Load(EOS(STATIC_695), i145)
695_0_power_Load(EOS(STATIC_695), i145) → 715_0_power_Load(EOS(STATIC_715), i145)
715_0_power_Load(EOS(STATIC_715), i145) → 717_0_power_Load(EOS(STATIC_717), i145)
717_0_power_Load(EOS(STATIC_717), i145) → 719_0_power_IntArithmetic(EOS(STATIC_719), i145)
719_0_power_IntArithmetic(EOS(STATIC_719), i145) → 721_0_power_Store(EOS(STATIC_721), i145)
721_0_power_Store(EOS(STATIC_721), i145) → 723_0_power_Load(EOS(STATIC_723), i145)
723_0_power_Load(EOS(STATIC_723), i145) → 725_0_power_ConstantStackPush(EOS(STATIC_725), i145)
725_0_power_ConstantStackPush(EOS(STATIC_725), i145) → 727_0_power_IntArithmetic(EOS(STATIC_727), i145, 2)
727_0_power_IntArithmetic(EOS(STATIC_727), i145, matching1) → 729_0_power_Store(EOS(STATIC_729), /(i145, 2)) | &&(>=(i145, 1), =(matching1, 2))
729_0_power_Store(EOS(STATIC_729), i159) → 731_0_power_JMP(EOS(STATIC_731), i159)
731_0_power_JMP(EOS(STATIC_731), i159) → 735_0_power_Load(EOS(STATIC_735), i159)
735_0_power_Load(EOS(STATIC_735), i159) → 661_0_power_Load(EOS(STATIC_661), i159)
661_0_power_Load(EOS(STATIC_661), i138) → 665_0_power_LE(EOS(STATIC_665), i138, i138)
693_0_power_NE(EOS(STATIC_693), i145) → 697_0_power_Load(EOS(STATIC_697), i145)
697_0_power_Load(EOS(STATIC_697), i145) → 701_0_power_Load(EOS(STATIC_701), i145)
701_0_power_Load(EOS(STATIC_701), i145) → 705_0_power_IntArithmetic(EOS(STATIC_705), i145)
705_0_power_IntArithmetic(EOS(STATIC_705), i145) → 709_0_power_Store(EOS(STATIC_709), i145)
709_0_power_Store(EOS(STATIC_709), i145) → 715_0_power_Load(EOS(STATIC_715), i145)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
665_0_power_LE(EOS(STATIC_665), x0, x0) → 665_0_power_LE(EOS(STATIC_665), /(x0, 2), /(x0, 2)) | >(+(x0, 1), 1)
R rules:

Filtered ground terms:



665_0_power_LE(x1, x2, x3) → 665_0_power_LE(x2, x3)
EOS(x1) → EOS
Cond_665_0_power_LE(x1, x2, x3, x4) → Cond_665_0_power_LE(x1, x3, x4)

Filtered duplicate args:



665_0_power_LE(x1, x2) → 665_0_power_LE(x2)
Cond_665_0_power_LE(x1, x2, x3) → Cond_665_0_power_LE(x1, x3)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
665_0_power_LE(x0) → 665_0_power_LE(/(x0, 2)) | >(x0, 0)
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
665_0_POWER_LE(x0) → COND_665_0_POWER_LE(>(x0, 0), x0)
COND_665_0_POWER_LE(TRUE, x0) → 665_0_POWER_LE(/(x0, 2))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(x0[0] > 0, x0[0])
(1): COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(x0[1] / 2)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])


(1) -> (0), if (x0[1] / 2* x0[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@225274a3 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 665_0_POWER_LE(x0) → COND_665_0_POWER_LE(>(x0, 0), x0) the following chains were created:
  • We consider the chain 665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0]), COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]665_0_POWER_LE(x0[0])≥NonInfC∧665_0_POWER_LE(x0[0])≥COND_665_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE665_0_POWER_LE(x0[0])≥NonInfC∧665_0_POWER_LE(x0[0])≥COND_665_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)







For Pair COND_665_0_POWER_LE(TRUE, x0) → 665_0_POWER_LE(/(x0, 2)) the following chains were created:
  • We consider the chain 665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0]), COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2)), 665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0]) which results in the following constraint:

    (7)    (>(x0[0], 0)=TRUEx0[0]=x0[1]/(x0[1], 2)=x0[0]1COND_665_0_POWER_LE(TRUE, x0[1])≥NonInfC∧COND_665_0_POWER_LE(TRUE, x0[1])≥665_0_POWER_LE(/(x0[1], 2))∧(UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥))



    We simplified constraint (7) using rules (III), (IV) which results in the following new constraint:

    (8)    (>(x0[0], 0)=TRUECOND_665_0_POWER_LE(TRUE, x0[0])≥NonInfC∧COND_665_0_POWER_LE(TRUE, x0[0])≥665_0_POWER_LE(/(x0[0], 2))∧(UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧[2] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 665_0_POWER_LE(x0) → COND_665_0_POWER_LE(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)

  • COND_665_0_POWER_LE(TRUE, x0) → 665_0_POWER_LE(/(x0, 2))
    • (x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(665_0_POWER_LE(x1)) = [-1] + x1   
POL(COND_665_0_POWER_LE(x1, x2)) = [-1] + x2   
POL(>(x1, x2)) = 0   
POL(0) = 0   
POL(2) = [2]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(/(x1, 2)1 @ {665_0_POWER_LE_1/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2))

The following pairs are in Pbound:

665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0])
COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2))

The following pairs are in P:

665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

/1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(x0[0] > 0, x0[0])


The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE