0 JBC
↳1 JBCToGraph (⇒, 180 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 40 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 130 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {
/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 26 rules for P and 0 rules for R.
P rules:
665_0_power_LE(EOS(STATIC_665), i145, i145) → 668_0_power_LE(EOS(STATIC_668), i145, i145)
668_0_power_LE(EOS(STATIC_668), i145, i145) → 672_0_power_Load(EOS(STATIC_672), i145) | >(i145, 0)
672_0_power_Load(EOS(STATIC_672), i145) → 676_0_power_ConstantStackPush(EOS(STATIC_676), i145, i145)
676_0_power_ConstantStackPush(EOS(STATIC_676), i145, i145) → 681_0_power_IntArithmetic(EOS(STATIC_681), i145, i145, 2)
681_0_power_IntArithmetic(EOS(STATIC_681), i145, i145, matching1) → 686_0_power_ConstantStackPush(EOS(STATIC_686), i145) | =(matching1, 2)
686_0_power_ConstantStackPush(EOS(STATIC_686), i145) → 690_0_power_NE(EOS(STATIC_690), i145)
690_0_power_NE(EOS(STATIC_690), i145) → 692_0_power_NE(EOS(STATIC_692), i145)
690_0_power_NE(EOS(STATIC_690), i145) → 693_0_power_NE(EOS(STATIC_693), i145)
692_0_power_NE(EOS(STATIC_692), i145) → 695_0_power_Load(EOS(STATIC_695), i145)
695_0_power_Load(EOS(STATIC_695), i145) → 715_0_power_Load(EOS(STATIC_715), i145)
715_0_power_Load(EOS(STATIC_715), i145) → 717_0_power_Load(EOS(STATIC_717), i145)
717_0_power_Load(EOS(STATIC_717), i145) → 719_0_power_IntArithmetic(EOS(STATIC_719), i145)
719_0_power_IntArithmetic(EOS(STATIC_719), i145) → 721_0_power_Store(EOS(STATIC_721), i145)
721_0_power_Store(EOS(STATIC_721), i145) → 723_0_power_Load(EOS(STATIC_723), i145)
723_0_power_Load(EOS(STATIC_723), i145) → 725_0_power_ConstantStackPush(EOS(STATIC_725), i145)
725_0_power_ConstantStackPush(EOS(STATIC_725), i145) → 727_0_power_IntArithmetic(EOS(STATIC_727), i145, 2)
727_0_power_IntArithmetic(EOS(STATIC_727), i145, matching1) → 729_0_power_Store(EOS(STATIC_729), /(i145, 2)) | &&(>=(i145, 1), =(matching1, 2))
729_0_power_Store(EOS(STATIC_729), i159) → 731_0_power_JMP(EOS(STATIC_731), i159)
731_0_power_JMP(EOS(STATIC_731), i159) → 735_0_power_Load(EOS(STATIC_735), i159)
735_0_power_Load(EOS(STATIC_735), i159) → 661_0_power_Load(EOS(STATIC_661), i159)
661_0_power_Load(EOS(STATIC_661), i138) → 665_0_power_LE(EOS(STATIC_665), i138, i138)
693_0_power_NE(EOS(STATIC_693), i145) → 697_0_power_Load(EOS(STATIC_697), i145)
697_0_power_Load(EOS(STATIC_697), i145) → 701_0_power_Load(EOS(STATIC_701), i145)
701_0_power_Load(EOS(STATIC_701), i145) → 705_0_power_IntArithmetic(EOS(STATIC_705), i145)
705_0_power_IntArithmetic(EOS(STATIC_705), i145) → 709_0_power_Store(EOS(STATIC_709), i145)
709_0_power_Store(EOS(STATIC_709), i145) → 715_0_power_Load(EOS(STATIC_715), i145)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
665_0_power_LE(EOS(STATIC_665), x0, x0) → 665_0_power_LE(EOS(STATIC_665), /(x0, 2), /(x0, 2)) | >(+(x0, 1), 1)
R rules:
Filtered ground terms:
665_0_power_LE(x1, x2, x3) → 665_0_power_LE(x2, x3)
EOS(x1) → EOS
Cond_665_0_power_LE(x1, x2, x3, x4) → Cond_665_0_power_LE(x1, x3, x4)
Filtered duplicate args:
665_0_power_LE(x1, x2) → 665_0_power_LE(x2)
Cond_665_0_power_LE(x1, x2, x3) → Cond_665_0_power_LE(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
665_0_power_LE(x0) → 665_0_power_LE(/(x0, 2)) | >(x0, 0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
665_0_POWER_LE(x0) → COND_665_0_POWER_LE(>(x0, 0), x0)
COND_665_0_POWER_LE(TRUE, x0) → 665_0_POWER_LE(/(x0, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] / 2 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 665_0_POWER_LE(x0[0])≥NonInfC∧665_0_POWER_LE(x0[0])≥COND_665_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 665_0_POWER_LE(x0[0])≥NonInfC∧665_0_POWER_LE(x0[0])≥COND_665_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_665_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧/(x0[1], 2)=x0[0]1 ⇒ COND_665_0_POWER_LE(TRUE, x0[1])≥NonInfC∧COND_665_0_POWER_LE(TRUE, x0[1])≥665_0_POWER_LE(/(x0[1], 2))∧(UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ COND_665_0_POWER_LE(TRUE, x0[0])≥NonInfC∧COND_665_0_POWER_LE(TRUE, x0[0])≥665_0_POWER_LE(/(x0[0], 2))∧(UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x0[0] ≥ 0∧[2] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(665_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(665_0_POWER_LE(x1)) = [-1] + x1
POL(COND_665_0_POWER_LE(x1, x2)) = [-1] + x2
POL(>(x1, x2)) = 0
POL(0) = 0
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {665_0_POWER_LE_1/0}) = max{x1, [-1]x1} + [-1]
COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2))
665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0])
COND_665_0_POWER_LE(TRUE, x0[1]) → 665_0_POWER_LE(/(x0[1], 2))
665_0_POWER_LE(x0[0]) → COND_665_0_POWER_LE(>(x0[0], 0), x0[0])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer