0 JBC
↳1 JBCToGraph (⇒, 540 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 100 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {
/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 26 rules for P and 0 rules for R.
P rules:
681_0_power_LE(EOS(STATIC_681), i153, i153) → 685_0_power_LE(EOS(STATIC_685), i153, i153)
685_0_power_LE(EOS(STATIC_685), i153, i153) → 689_0_power_Load(EOS(STATIC_689), i153) | >(i153, 0)
689_0_power_Load(EOS(STATIC_689), i153) → 692_0_power_ConstantStackPush(EOS(STATIC_692), i153, i153)
692_0_power_ConstantStackPush(EOS(STATIC_692), i153, i153) → 697_0_power_IntArithmetic(EOS(STATIC_697), i153, i153, 2)
697_0_power_IntArithmetic(EOS(STATIC_697), i153, i153, matching1) → 703_0_power_ConstantStackPush(EOS(STATIC_703), i153) | =(matching1, 2)
703_0_power_ConstantStackPush(EOS(STATIC_703), i153) → 707_0_power_NE(EOS(STATIC_707), i153)
707_0_power_NE(EOS(STATIC_707), i153) → 709_0_power_NE(EOS(STATIC_709), i153)
707_0_power_NE(EOS(STATIC_707), i153) → 710_0_power_NE(EOS(STATIC_710), i153)
709_0_power_NE(EOS(STATIC_709), i153) → 712_0_power_Load(EOS(STATIC_712), i153)
712_0_power_Load(EOS(STATIC_712), i153) → 731_0_power_Load(EOS(STATIC_731), i153)
731_0_power_Load(EOS(STATIC_731), i153) → 734_0_power_Load(EOS(STATIC_734), i153)
734_0_power_Load(EOS(STATIC_734), i153) → 736_0_power_IntArithmetic(EOS(STATIC_736), i153)
736_0_power_IntArithmetic(EOS(STATIC_736), i153) → 738_0_power_Store(EOS(STATIC_738), i153)
738_0_power_Store(EOS(STATIC_738), i153) → 739_0_power_Load(EOS(STATIC_739), i153)
739_0_power_Load(EOS(STATIC_739), i153) → 741_0_power_ConstantStackPush(EOS(STATIC_741), i153)
741_0_power_ConstantStackPush(EOS(STATIC_741), i153) → 743_0_power_IntArithmetic(EOS(STATIC_743), i153, 2)
743_0_power_IntArithmetic(EOS(STATIC_743), i153, matching1) → 745_0_power_Store(EOS(STATIC_745), /(i153, 2)) | &&(>=(i153, 1), =(matching1, 2))
745_0_power_Store(EOS(STATIC_745), i161) → 747_0_power_JMP(EOS(STATIC_747), i161)
747_0_power_JMP(EOS(STATIC_747), i161) → 760_0_power_Load(EOS(STATIC_760), i161)
760_0_power_Load(EOS(STATIC_760), i161) → 678_0_power_Load(EOS(STATIC_678), i161)
678_0_power_Load(EOS(STATIC_678), i141) → 681_0_power_LE(EOS(STATIC_681), i141, i141)
710_0_power_NE(EOS(STATIC_710), i153) → 714_0_power_Load(EOS(STATIC_714), i153)
714_0_power_Load(EOS(STATIC_714), i153) → 718_0_power_Load(EOS(STATIC_718), i153)
718_0_power_Load(EOS(STATIC_718), i153) → 722_0_power_IntArithmetic(EOS(STATIC_722), i153)
722_0_power_IntArithmetic(EOS(STATIC_722), i153) → 726_0_power_Store(EOS(STATIC_726), i153)
726_0_power_Store(EOS(STATIC_726), i153) → 731_0_power_Load(EOS(STATIC_731), i153)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
681_0_power_LE(EOS(STATIC_681), x0, x0) → 681_0_power_LE(EOS(STATIC_681), /(x0, 2), /(x0, 2)) | >(+(x0, 1), 1)
R rules:
Filtered ground terms:
681_0_power_LE(x1, x2, x3) → 681_0_power_LE(x2, x3)
EOS(x1) → EOS
Cond_681_0_power_LE(x1, x2, x3, x4) → Cond_681_0_power_LE(x1, x3, x4)
Filtered duplicate args:
681_0_power_LE(x1, x2) → 681_0_power_LE(x2)
Cond_681_0_power_LE(x1, x2, x3) → Cond_681_0_power_LE(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
681_0_power_LE(x0) → 681_0_power_LE(/(x0, 2)) | >(x0, 0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
681_0_POWER_LE(x0) → COND_681_0_POWER_LE(>(x0, 0), x0)
COND_681_0_POWER_LE(TRUE, x0) → 681_0_POWER_LE(/(x0, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] / 2 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 681_0_POWER_LE(x0[0])≥NonInfC∧681_0_POWER_LE(x0[0])≥COND_681_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 681_0_POWER_LE(x0[0])≥NonInfC∧681_0_POWER_LE(x0[0])≥COND_681_0_POWER_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_681_0_POWER_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧/(x0[1], 2)=x0[0]1 ⇒ COND_681_0_POWER_LE(TRUE, x0[1])≥NonInfC∧COND_681_0_POWER_LE(TRUE, x0[1])≥681_0_POWER_LE(/(x0[1], 2))∧(UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ COND_681_0_POWER_LE(TRUE, x0[0])≥NonInfC∧COND_681_0_POWER_LE(TRUE, x0[0])≥681_0_POWER_LE(/(x0[0], 2))∧(UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x0[0] ≥ 0∧[2] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(681_0_POWER_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(681_0_POWER_LE(x1)) = [-1] + x1
POL(COND_681_0_POWER_LE(x1, x2)) = [-1] + x2
POL(>(x1, x2)) = 0
POL(0) = 0
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {681_0_POWER_LE_1/0}) = max{x1, [-1]x1} + [-1]
COND_681_0_POWER_LE(TRUE, x0[1]) → 681_0_POWER_LE(/(x0[1], 2))
681_0_POWER_LE(x0[0]) → COND_681_0_POWER_LE(>(x0[0], 0), x0[0])
COND_681_0_POWER_LE(TRUE, x0[1]) → 681_0_POWER_LE(/(x0[1], 2))
681_0_POWER_LE(x0[0]) → COND_681_0_POWER_LE(>(x0[0], 0), x0[0])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer