(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_25 (Sun Microsystems Inc.) Main-Class: ClassAnalysisRec/ClassAnalysisRec
package ClassAnalysisRec;

public class ClassAnalysisRec {
A field;

public static void main(String[] args) {
Random.args = args;
ClassAnalysisRec t = new ClassAnalysisRec();
t.field = new A();
t.field = new B();
t.eval();
}

public void eval() {
int x = Random.random() % 100;
this.field.test(x);
}
}

class A {
public boolean test(int x) {
return this.test(x-1);
}
}

class B extends A {
public boolean test(int x) {
if (x <= 0) return true;
return test(x - 1);
}
}


package ClassAnalysisRec;

public class Random {
static String[] args;
static int index = 0;

public static int random() {
final String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
ClassAnalysisRec.ClassAnalysisRec.main([Ljava/lang/String;)V: Graph of 71 nodes with 0 SCCs.

ClassAnalysisRec.ClassAnalysisRec.eval()V: Graph of 82 nodes with 0 SCCs.

ClassAnalysisRec.B.test(I)Z: Graph of 20 nodes with 0 SCCs.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: ClassAnalysisRec.B.test(I)Z
SCC calls the following helper methods: ClassAnalysisRec.B.test(I)Z
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 10 rules for P and 10 rules for R.


P rules:
273_0_test_GT(EOS(STATIC_273), i26, i26) → 283_0_test_GT(EOS(STATIC_283), i26, i26)
283_0_test_GT(EOS(STATIC_283), i26, i26) → 294_0_test_Load(EOS(STATIC_294), i26) | >(i26, 0)
294_0_test_Load(EOS(STATIC_294), i26) → 306_0_test_Load(EOS(STATIC_306), i26)
306_0_test_Load(EOS(STATIC_306), i26) → 333_0_test_ConstantStackPush(EOS(STATIC_333), i26)
333_0_test_ConstantStackPush(EOS(STATIC_333), i26) → 350_0_test_IntArithmetic(EOS(STATIC_350), i26, 1)
350_0_test_IntArithmetic(EOS(STATIC_350), i26, matching1) → 361_0_test_InvokeMethod(EOS(STATIC_361), -(i26, 1)) | &&(>(i26, 0), =(matching1, 1))
361_0_test_InvokeMethod(EOS(STATIC_361), i35) → 373_1_test_InvokeMethod(373_0_test_Load(EOS(STATIC_373), i35), i35)
373_0_test_Load(EOS(STATIC_373), i35) → 384_0_test_Load(EOS(STATIC_384), i35)
384_0_test_Load(EOS(STATIC_384), i35) → 261_0_test_Load(EOS(STATIC_261), i35)
261_0_test_Load(EOS(STATIC_261), i21) → 273_0_test_GT(EOS(STATIC_273), i21, i21)
R rules:
273_0_test_GT(EOS(STATIC_273), matching1, matching2) → 281_0_test_GT(EOS(STATIC_281), 0, 0) | &&(=(matching1, 0), =(matching2, 0))
281_0_test_GT(EOS(STATIC_281), matching1, matching2) → 291_0_test_ConstantStackPush(EOS(STATIC_291), 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
291_0_test_ConstantStackPush(EOS(STATIC_291), matching1) → 303_0_test_Return(EOS(STATIC_303), 0, 1) | =(matching1, 0)
373_1_test_InvokeMethod(303_0_test_Return(EOS(STATIC_303), matching1, matching2), matching3) → 443_0_test_Return(EOS(STATIC_443), 0, 0, 1) | &&(&&(=(matching1, 0), =(matching2, 1)), =(matching3, 0))
373_1_test_InvokeMethod(452_0_test_Return(EOS(STATIC_452), matching1), i57) → 475_0_test_Return(EOS(STATIC_475), i57, 1) | =(matching1, 1)
373_1_test_InvokeMethod(484_0_test_Return(EOS(STATIC_484), matching1), i66) → 519_0_test_Return(EOS(STATIC_519), i66, 1) | =(matching1, 1)
443_0_test_Return(EOS(STATIC_443), matching1, matching2, matching3) → 452_0_test_Return(EOS(STATIC_452), 1) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 1))
452_0_test_Return(EOS(STATIC_452), matching1) → 484_0_test_Return(EOS(STATIC_484), 1) | =(matching1, 1)
475_0_test_Return(EOS(STATIC_475), i57, matching1) → 484_0_test_Return(EOS(STATIC_484), 1) | =(matching1, 1)
519_0_test_Return(EOS(STATIC_519), i66, matching1) → 475_0_test_Return(EOS(STATIC_475), i66, 1) | =(matching1, 1)

Combined rules. Obtained 1 conditional rules for P and 4 conditional rules for R.


P rules:
273_0_test_GT(EOS(STATIC_273), x0, x0) → 373_1_test_InvokeMethod(273_0_test_GT(EOS(STATIC_273), -(x0, 1), -(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
273_0_test_GT(EOS(STATIC_273), 0, 0) → 303_0_test_Return(EOS(STATIC_303), 0, 1)
373_1_test_InvokeMethod(452_0_test_Return(EOS(STATIC_452), 1), x1) → 484_0_test_Return(EOS(STATIC_484), 1)
373_1_test_InvokeMethod(484_0_test_Return(EOS(STATIC_484), 1), x1) → 484_0_test_Return(EOS(STATIC_484), 1)
373_1_test_InvokeMethod(303_0_test_Return(EOS(STATIC_303), 0, 1), 0) → 484_0_test_Return(EOS(STATIC_484), 1)

Filtered ground terms:



273_0_test_GT(x1, x2, x3) → 273_0_test_GT(x2, x3)
Cond_273_0_test_GT(x1, x2, x3, x4) → Cond_273_0_test_GT(x1, x3, x4)
484_0_test_Return(x1, x2) → 484_0_test_Return
303_0_test_Return(x1, x2, x3) → 303_0_test_Return
452_0_test_Return(x1, x2) → 452_0_test_Return

Filtered duplicate args:



273_0_test_GT(x1, x2) → 273_0_test_GT(x2)
Cond_273_0_test_GT(x1, x2, x3) → Cond_273_0_test_GT(x1, x3)

Combined rules. Obtained 1 conditional rules for P and 4 conditional rules for R.


P rules:
273_0_test_GT(x0) → 373_1_test_InvokeMethod(273_0_test_GT(-(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(452_0_test_Return, x1) → 484_0_test_Return
373_1_test_InvokeMethod(484_0_test_Return, x1) → 484_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 484_0_test_Return

Performed bisimulation on rules. Used the following equivalence classes: {[303_0_test_Return, 452_0_test_Return, 484_0_test_Return]=303_0_test_Return}


Finished conversion. Obtained 2 rules for P and 3 rules for R. System has predefined symbols.


P rules:
273_0_TEST_GT(x0) → COND_273_0_TEST_GT(>(x0, 0), x0)
COND_273_0_TEST_GT(TRUE, x0) → 273_0_TEST_GT(-(x0, 1))
R rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, x1) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 303_0_test_Return

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, x1) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 303_0_test_Return

The integer pair graph contains the following rules and edges:
(0): 273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(x0[0] > 0, x0[0])
(1): COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(x0[1] - 1)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])


(1) -> (0), if (x0[1] - 1* x0[0])



The set Q consists of the following terms:
273_0_test_GT(0)
373_1_test_InvokeMethod(303_0_test_Return, x0)

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4cc7014c Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 273_0_TEST_GT(x0) → COND_273_0_TEST_GT(>(x0, 0), x0) the following chains were created:
  • We consider the chain 273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(>(x0[0], 0), x0[0]), COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(-(x0[1], 1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]273_0_TEST_GT(x0[0])≥NonInfC∧273_0_TEST_GT(x0[0])≥COND_273_0_TEST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE273_0_TEST_GT(x0[0])≥NonInfC∧273_0_TEST_GT(x0[0])≥COND_273_0_TEST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)







For Pair COND_273_0_TEST_GT(TRUE, x0) → 273_0_TEST_GT(-(x0, 1)) the following chains were created:
  • We consider the chain COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(-(x0[1], 1)) which results in the following constraint:

    (7)    (COND_273_0_TEST_GT(TRUE, x0[1])≥NonInfC∧COND_273_0_TEST_GT(TRUE, x0[1])≥273_0_TEST_GT(-(x0[1], 1))∧(UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 273_0_TEST_GT(x0) → COND_273_0_TEST_GT(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)

  • COND_273_0_TEST_GT(TRUE, x0) → 273_0_TEST_GT(-(x0, 1))
    • ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(273_0_test_GT(x1)) = [-1]   
POL(0) = 0   
POL(303_0_test_Return) = [-1]   
POL(373_1_test_InvokeMethod(x1, x2)) = [-1]   
POL(273_0_TEST_GT(x1)) = [2]x1   
POL(COND_273_0_TEST_GT(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   

The following pairs are in P>:

COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(-(x0[1], 1))

The following pairs are in Pbound:

273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(>(x0[0], 0), x0[0])

The following pairs are in P:

273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(>(x0[0], 0), x0[0])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, x1) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 303_0_test_Return

The integer pair graph contains the following rules and edges:
(0): 273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(x0[0] > 0, x0[0])


The set Q consists of the following terms:
273_0_test_GT(0)
373_1_test_InvokeMethod(303_0_test_Return, x0)

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, x1) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 303_0_test_Return

The integer pair graph contains the following rules and edges:
(1): COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(x0[1] - 1)


The set Q consists of the following terms:
273_0_test_GT(0)
373_1_test_InvokeMethod(303_0_test_Return, x0)

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE