0 JBC
↳1 JBCToGraph (⇒, 150 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 90 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 140 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
package ClassAnalysisRec;
public class ClassAnalysisRec {
A field;
public static void main(String[] args) {
Random.args = args;
ClassAnalysisRec t = new ClassAnalysisRec();
t.field = new A();
t.field = new B();
t.eval();
}
public void eval() {
int x = Random.random() % 100;
this.field.test(x);
}
}
class A {
public boolean test(int x) {
return this.test(x-1);
}
}
class B extends A {
public boolean test(int x) {
if (x <= 0) return true;
return test(x - 1);
}
}
package ClassAnalysisRec;
public class Random {
static String[] args;
static int index = 0;
public static int random() {
final String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 10 rules for R.
P rules:
273_0_test_GT(EOS(STATIC_273), i26, i26) → 283_0_test_GT(EOS(STATIC_283), i26, i26)
283_0_test_GT(EOS(STATIC_283), i26, i26) → 294_0_test_Load(EOS(STATIC_294), i26) | >(i26, 0)
294_0_test_Load(EOS(STATIC_294), i26) → 306_0_test_Load(EOS(STATIC_306), i26)
306_0_test_Load(EOS(STATIC_306), i26) → 333_0_test_ConstantStackPush(EOS(STATIC_333), i26)
333_0_test_ConstantStackPush(EOS(STATIC_333), i26) → 350_0_test_IntArithmetic(EOS(STATIC_350), i26, 1)
350_0_test_IntArithmetic(EOS(STATIC_350), i26, matching1) → 361_0_test_InvokeMethod(EOS(STATIC_361), -(i26, 1)) | &&(>(i26, 0), =(matching1, 1))
361_0_test_InvokeMethod(EOS(STATIC_361), i35) → 373_1_test_InvokeMethod(373_0_test_Load(EOS(STATIC_373), i35), i35)
373_0_test_Load(EOS(STATIC_373), i35) → 384_0_test_Load(EOS(STATIC_384), i35)
384_0_test_Load(EOS(STATIC_384), i35) → 261_0_test_Load(EOS(STATIC_261), i35)
261_0_test_Load(EOS(STATIC_261), i21) → 273_0_test_GT(EOS(STATIC_273), i21, i21)
R rules:
273_0_test_GT(EOS(STATIC_273), matching1, matching2) → 281_0_test_GT(EOS(STATIC_281), 0, 0) | &&(=(matching1, 0), =(matching2, 0))
281_0_test_GT(EOS(STATIC_281), matching1, matching2) → 291_0_test_ConstantStackPush(EOS(STATIC_291), 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
291_0_test_ConstantStackPush(EOS(STATIC_291), matching1) → 303_0_test_Return(EOS(STATIC_303), 0, 1) | =(matching1, 0)
373_1_test_InvokeMethod(303_0_test_Return(EOS(STATIC_303), matching1, matching2), matching3) → 443_0_test_Return(EOS(STATIC_443), 0, 0, 1) | &&(&&(=(matching1, 0), =(matching2, 1)), =(matching3, 0))
373_1_test_InvokeMethod(452_0_test_Return(EOS(STATIC_452), matching1), i57) → 475_0_test_Return(EOS(STATIC_475), i57, 1) | =(matching1, 1)
373_1_test_InvokeMethod(484_0_test_Return(EOS(STATIC_484), matching1), i66) → 519_0_test_Return(EOS(STATIC_519), i66, 1) | =(matching1, 1)
443_0_test_Return(EOS(STATIC_443), matching1, matching2, matching3) → 452_0_test_Return(EOS(STATIC_452), 1) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 1))
452_0_test_Return(EOS(STATIC_452), matching1) → 484_0_test_Return(EOS(STATIC_484), 1) | =(matching1, 1)
475_0_test_Return(EOS(STATIC_475), i57, matching1) → 484_0_test_Return(EOS(STATIC_484), 1) | =(matching1, 1)
519_0_test_Return(EOS(STATIC_519), i66, matching1) → 475_0_test_Return(EOS(STATIC_475), i66, 1) | =(matching1, 1)
Combined rules. Obtained 1 conditional rules for P and 4 conditional rules for R.
P rules:
273_0_test_GT(EOS(STATIC_273), x0, x0) → 373_1_test_InvokeMethod(273_0_test_GT(EOS(STATIC_273), -(x0, 1), -(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
273_0_test_GT(EOS(STATIC_273), 0, 0) → 303_0_test_Return(EOS(STATIC_303), 0, 1)
373_1_test_InvokeMethod(452_0_test_Return(EOS(STATIC_452), 1), x1) → 484_0_test_Return(EOS(STATIC_484), 1)
373_1_test_InvokeMethod(484_0_test_Return(EOS(STATIC_484), 1), x1) → 484_0_test_Return(EOS(STATIC_484), 1)
373_1_test_InvokeMethod(303_0_test_Return(EOS(STATIC_303), 0, 1), 0) → 484_0_test_Return(EOS(STATIC_484), 1)
Filtered ground terms:
273_0_test_GT(x1, x2, x3) → 273_0_test_GT(x2, x3)
Cond_273_0_test_GT(x1, x2, x3, x4) → Cond_273_0_test_GT(x1, x3, x4)
484_0_test_Return(x1, x2) → 484_0_test_Return
303_0_test_Return(x1, x2, x3) → 303_0_test_Return
452_0_test_Return(x1, x2) → 452_0_test_Return
Filtered duplicate args:
273_0_test_GT(x1, x2) → 273_0_test_GT(x2)
Cond_273_0_test_GT(x1, x2, x3) → Cond_273_0_test_GT(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 4 conditional rules for R.
P rules:
273_0_test_GT(x0) → 373_1_test_InvokeMethod(273_0_test_GT(-(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(452_0_test_Return, x1) → 484_0_test_Return
373_1_test_InvokeMethod(484_0_test_Return, x1) → 484_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 484_0_test_Return
Performed bisimulation on rules. Used the following equivalence classes: {[303_0_test_Return, 452_0_test_Return, 484_0_test_Return]=303_0_test_Return}
Finished conversion. Obtained 2 rules for P and 3 rules for R. System has predefined symbols.
P rules:
273_0_TEST_GT(x0) → COND_273_0_TEST_GT(>(x0, 0), x0)
COND_273_0_TEST_GT(TRUE, x0) → 273_0_TEST_GT(-(x0, 1))
R rules:
273_0_test_GT(0) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, x1) → 303_0_test_Return
373_1_test_InvokeMethod(303_0_test_Return, 0) → 303_0_test_Return
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] - 1 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 273_0_TEST_GT(x0[0])≥NonInfC∧273_0_TEST_GT(x0[0])≥COND_273_0_TEST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 273_0_TEST_GT(x0[0])≥NonInfC∧273_0_TEST_GT(x0[0])≥COND_273_0_TEST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_273_0_TEST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [(2)bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (COND_273_0_TEST_GT(TRUE, x0[1])≥NonInfC∧COND_273_0_TEST_GT(TRUE, x0[1])≥273_0_TEST_GT(-(x0[1], 1))∧(UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥))
(8) ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)
(9) ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)
(10) ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧[2 + (-1)bso_14] ≥ 0)
(11) ((UIncreasing(273_0_TEST_GT(-(x0[1], 1))), ≥)∧[bni_13] = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(273_0_test_GT(x1)) = [-1]
POL(0) = 0
POL(303_0_test_Return) = [-1]
POL(373_1_test_InvokeMethod(x1, x2)) = [-1]
POL(273_0_TEST_GT(x1)) = [2]x1
POL(COND_273_0_TEST_GT(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
COND_273_0_TEST_GT(TRUE, x0[1]) → 273_0_TEST_GT(-(x0[1], 1))
273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(>(x0[0], 0), x0[0])
273_0_TEST_GT(x0[0]) → COND_273_0_TEST_GT(>(x0[0], 0), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer