0 JBC
↳1 JBCToGraph (⇒, 110 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 160 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class AG313 {
public static void main(String[] args) {
int x, y;
x = args[0].length();
y = args[1].length() + 1;
quot(x,y);
}
public static int quot(int x, int y) {
int i = 0;
if(x==0) return 0;
while (x > 0 && y > 0) {
i += 1;
x = (x - 1)- (y - 1);
}
return i;
}
}
Generated 16 rules for P and 0 rules for R.
P rules:
568_0_quot_LE(EOS(STATIC_568), i40, i138, i40, i138) → 572_0_quot_LE(EOS(STATIC_572), i40, i138, i40, i138)
572_0_quot_LE(EOS(STATIC_572), i40, i138, i40, i138) → 576_0_quot_Load(EOS(STATIC_576), i40, i138, i40) | >(i138, 0)
576_0_quot_Load(EOS(STATIC_576), i40, i138, i40) → 581_0_quot_LE(EOS(STATIC_581), i40, i138, i40, i40)
581_0_quot_LE(EOS(STATIC_581), i40, i138, i40, i40) → 587_0_quot_Inc(EOS(STATIC_587), i40, i138, i40) | >(i40, 0)
587_0_quot_Inc(EOS(STATIC_587), i40, i138, i40) → 591_0_quot_Load(EOS(STATIC_591), i40, i138, i40)
591_0_quot_Load(EOS(STATIC_591), i40, i138, i40) → 595_0_quot_ConstantStackPush(EOS(STATIC_595), i40, i40, i138)
595_0_quot_ConstantStackPush(EOS(STATIC_595), i40, i40, i138) → 597_0_quot_IntArithmetic(EOS(STATIC_597), i40, i40, i138, 1)
597_0_quot_IntArithmetic(EOS(STATIC_597), i40, i40, i138, matching1) → 599_0_quot_Load(EOS(STATIC_599), i40, i40, -(i138, 1)) | &&(>(i138, 0), =(matching1, 1))
599_0_quot_Load(EOS(STATIC_599), i40, i40, i144) → 601_0_quot_ConstantStackPush(EOS(STATIC_601), i40, i40, i144, i40)
601_0_quot_ConstantStackPush(EOS(STATIC_601), i40, i40, i144, i40) → 603_0_quot_IntArithmetic(EOS(STATIC_603), i40, i40, i144, i40, 1)
603_0_quot_IntArithmetic(EOS(STATIC_603), i40, i40, i144, i40, matching1) → 606_0_quot_IntArithmetic(EOS(STATIC_606), i40, i40, i144, -(i40, 1)) | &&(>(i40, 0), =(matching1, 1))
606_0_quot_IntArithmetic(EOS(STATIC_606), i40, i40, i144, i146) → 608_0_quot_Store(EOS(STATIC_608), i40, i40, -(i144, i146)) | &&(>=(i144, 0), >=(i146, 0))
608_0_quot_Store(EOS(STATIC_608), i40, i40, i147) → 610_0_quot_JMP(EOS(STATIC_610), i40, i147, i40)
610_0_quot_JMP(EOS(STATIC_610), i40, i147, i40) → 613_0_quot_Load(EOS(STATIC_613), i40, i147, i40)
613_0_quot_Load(EOS(STATIC_613), i40, i147, i40) → 564_0_quot_Load(EOS(STATIC_564), i40, i147, i40)
564_0_quot_Load(EOS(STATIC_564), i40, i128, i40) → 568_0_quot_LE(EOS(STATIC_568), i40, i128, i40, i128)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
568_0_quot_LE(EOS(STATIC_568), x0, x1, x0, x1) → 568_0_quot_LE(EOS(STATIC_568), x0, -(-(x1, 1), -(x0, 1)), x0, -(-(x1, 1), -(x0, 1))) | &&(>(+(x1, 1), 1), >(+(x0, 1), 1))
R rules:
Filtered ground terms:
568_0_quot_LE(x1, x2, x3, x4, x5) → 568_0_quot_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_568_0_quot_LE(x1, x2, x3, x4, x5, x6) → Cond_568_0_quot_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
568_0_quot_LE(x1, x2, x3, x4) → 568_0_quot_LE(x3, x4)
Cond_568_0_quot_LE(x1, x2, x3, x4, x5) → Cond_568_0_quot_LE(x1, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
568_0_quot_LE(x0, x1) → 568_0_quot_LE(x0, -(-(x1, 1), -(x0, 1))) | &&(>(x1, 0), >(x0, 0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
568_0_QUOT_LE(x0, x1) → COND_568_0_QUOT_LE(&&(>(x1, 0), >(x0, 0)), x0, x1)
COND_568_0_QUOT_LE(TRUE, x0, x1) → 568_0_QUOT_LE(x0, -(-(x1, 1), -(x0, 1)))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > 0 && x0[0] > 0 ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (0), if (x0[1] →* x0[0]∧x1[1] - 1 - x0[1] - 1 →* x1[0])
(1) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 568_0_QUOT_LE(x0[0], x1[0])≥NonInfC∧568_0_QUOT_LE(x0[0], x1[0])≥COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 568_0_QUOT_LE(x0[0], x1[0])≥NonInfC∧568_0_QUOT_LE(x0[0], x1[0])≥COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[-1 + (-1)bso_13] + x0[0] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[-1 + (-1)bso_13] + x0[0] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[-1 + (-1)bso_13] + x0[0] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[-1 + (-1)bso_13] + x0[0] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] + x0[0] ≥ 0)
(8) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x0[0]1∧-(-(x1[1], 1), -(x0[1], 1))=x1[0]1 ⇒ COND_568_0_QUOT_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_568_0_QUOT_LE(TRUE, x0[1], x1[1])≥568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))∧(UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥))
(9) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_568_0_QUOT_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_568_0_QUOT_LE(TRUE, x0[0], x1[0])≥568_0_QUOT_LE(x0[0], -(-(x1[0], 1), -(x0[0], 1)))∧(UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥))
(10) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[0] + [(-1)bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(11) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[0] + [(-1)bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[0] + [(-1)bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x1[0] + [(-1)bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x1[0] + [(-1)bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(568_0_QUOT_LE(x1, x2)) = [-1] + x2
POL(COND_568_0_QUOT_LE(x1, x2, x3)) = x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
COND_568_0_QUOT_LE(TRUE, x0[1], x1[1]) → 568_0_QUOT_LE(x0[1], -(-(x1[1], 1), -(x0[1], 1)))
568_0_QUOT_LE(x0[0], x1[0]) → COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
568_0_QUOT_LE(x0[0], x1[0]) → COND_568_0_QUOT_LE(&&(>(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer