(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Apple Inc.) Main-Class: FactSLR
public class FactSLR {

public static int factorial(int n){
if (n < 1) return 1;
else return n*factorial(n-1);
}

public static int doSum(List x){
if (x==null) return 0;
else return factorial(x.head) + doSum(x.tail);
}

public static void main(String [] args) {
Random.args = args;
List l = List.mk(3*Random.random());
//System.out.println(doSum(l));
}
}



public class List {
public int head;
public List tail;

public List(int head, List tail) {
this.head = head;
this.tail = tail;
}

public List getTail() {
return tail;
}

public static List mk(int len) {
List result = null;

while (len-- > 0)
result = new List(Random.random(), result);

return result;
}
}

public class Random {
static String[] args;
static int index = 0;

public static int random() {
if (index >= args.length)
return 0;

String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
FactSLR.main([Ljava/lang/String;)V: Graph of 114 nodes with 0 SCCs.

List.mk(I)LList;: Graph of 120 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: List.mk(I)LList;
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 61 rules for P and 0 rules for R.


P rules:
1418_0_mk_Inc(EOS(STATIC_1418(i247)), i248, i248) → 1420_0_mk_LE(EOS(STATIC_1420(i247)), +(i248, -1), i248)
1420_0_mk_LE(EOS(STATIC_1420(i247)), i251, i255) → 1423_0_mk_LE(EOS(STATIC_1423(i247)), i251, i255)
1423_0_mk_LE(EOS(STATIC_1423(i247)), i251, i255) → 1426_0_mk_New(EOS(STATIC_1426(i247)), i251) | >(i255, 0)
1426_0_mk_New(EOS(STATIC_1426(i247)), i251) → 1429_0_mk_Duplicate(EOS(STATIC_1429(i247)), i251)
1429_0_mk_Duplicate(EOS(STATIC_1429(i247)), i251) → 1432_0_mk_InvokeMethod(EOS(STATIC_1432(i247)), i251)
1432_0_mk_InvokeMethod(EOS(STATIC_1432(i247)), i251) → 1438_0_random_FieldAccess(EOS(STATIC_1438(i247)), i251)
1438_0_random_FieldAccess(EOS(STATIC_1438(i247)), i251) → 1442_0_random_FieldAccess(EOS(STATIC_1442(i247)), i251, i247)
1442_0_random_FieldAccess(EOS(STATIC_1442(i247)), i251, i247) → 1444_0_random_ArrayLength(EOS(STATIC_1444(i247)), i251, i247, java.lang.Object(ARRAY(i26)))
1444_0_random_ArrayLength(EOS(STATIC_1444(i247)), i251, i247, java.lang.Object(ARRAY(i26))) → 1446_0_random_LT(EOS(STATIC_1446(i247)), i251, i247, i26) | >=(i26, 0)
1446_0_random_LT(EOS(STATIC_1446(i247)), i251, i247, i26) → 1447_0_random_LT(EOS(STATIC_1447(i247)), i251, i247, i26)
1446_0_random_LT(EOS(STATIC_1446(i247)), i251, i247, i26) → 1448_0_random_LT(EOS(STATIC_1448(i247)), i251, i247, i26)
1447_0_random_LT(EOS(STATIC_1447(i247)), i251, i247, i26) → 1450_0_random_FieldAccess(EOS(STATIC_1450(i247)), i251) | <(i247, i26)
1450_0_random_FieldAccess(EOS(STATIC_1450(i247)), i251) → 1453_0_random_FieldAccess(EOS(STATIC_1453(i247)), i251, java.lang.Object(ARRAY(i26)))
1453_0_random_FieldAccess(EOS(STATIC_1453(i247)), i251, java.lang.Object(ARRAY(i26))) → 1456_0_random_ArrayAccess(EOS(STATIC_1456(i247)), i251, java.lang.Object(ARRAY(i26)), i247)
1456_0_random_ArrayAccess(EOS(STATIC_1456(i247)), i251, java.lang.Object(ARRAY(i26)), i247) → 1460_0_random_ArrayAccess(EOS(STATIC_1460(i247)), i251, java.lang.Object(ARRAY(i26)), i247)
1460_0_random_ArrayAccess(EOS(STATIC_1460(i247)), i251, java.lang.Object(ARRAY(i26)), i247) → 1464_0_random_Store(EOS(STATIC_1464(i247)), i251, o279)
1464_0_random_Store(EOS(STATIC_1464(i247)), i251, o279) → 1469_0_random_FieldAccess(EOS(STATIC_1469(i247)), i251, o279)
1469_0_random_FieldAccess(EOS(STATIC_1469(i247)), i251, o279) → 1470_0_random_ConstantStackPush(EOS(STATIC_1470(i247)), i251, o279, i247)
1470_0_random_ConstantStackPush(EOS(STATIC_1470(i247)), i251, o279, i247) → 1476_0_random_IntArithmetic(EOS(STATIC_1476(i247)), i251, o279, i247, 1)
1476_0_random_IntArithmetic(EOS(STATIC_1476(i247)), i251, o279, i247, matching1) → 1481_0_random_FieldAccess(EOS(STATIC_1481(i247)), i251, o279, +(i247, 1)) | &&(>=(i247, 0), =(matching1, 1))
1481_0_random_FieldAccess(EOS(STATIC_1481(i247)), i251, o279, i265) → 1484_0_random_Load(EOS(STATIC_1484(i265)), i251, o279)
1484_0_random_Load(EOS(STATIC_1484(i265)), i251, o279) → 1487_0_random_InvokeMethod(EOS(STATIC_1487(i265)), i251, o279)
1487_0_random_InvokeMethod(EOS(STATIC_1487(i265)), i251, java.lang.Object(o282sub)) → 1491_0_random_InvokeMethod(EOS(STATIC_1491(i265)), i251, java.lang.Object(o282sub))
1491_0_random_InvokeMethod(EOS(STATIC_1491(i265)), i251, java.lang.Object(o282sub)) → 1496_0_length_Load(EOS(STATIC_1496(i265)), i251, java.lang.Object(o282sub), java.lang.Object(o282sub))
1496_0_length_Load(EOS(STATIC_1496(i265)), i251, java.lang.Object(o282sub), java.lang.Object(o282sub)) → 1507_0_length_FieldAccess(EOS(STATIC_1507(i265)), i251, java.lang.Object(o282sub), java.lang.Object(o282sub))
1507_0_length_FieldAccess(EOS(STATIC_1507(i265)), i251, java.lang.Object(java.lang.String(o286sub, i274)), java.lang.Object(java.lang.String(o286sub, i274))) → 1510_0_length_FieldAccess(EOS(STATIC_1510(i265)), i251, java.lang.Object(java.lang.String(o286sub, i274)), java.lang.Object(java.lang.String(o286sub, i274))) | &&(>=(i274, 0), >=(i275, 0))
1510_0_length_FieldAccess(EOS(STATIC_1510(i265)), i251, java.lang.Object(java.lang.String(o286sub, i274)), java.lang.Object(java.lang.String(o286sub, i274))) → 1517_0_length_Return(EOS(STATIC_1517(i265)), i251, java.lang.Object(java.lang.String(o286sub, i274)))
1517_0_length_Return(EOS(STATIC_1517(i265)), i251, java.lang.Object(java.lang.String(o286sub, i274))) → 1524_0_random_Return(EOS(STATIC_1524(i265)), i251)
1524_0_random_Return(EOS(STATIC_1524(i265)), i251) → 1526_0_mk_Load(EOS(STATIC_1526(i265)), i251)
1526_0_mk_Load(EOS(STATIC_1526(i265)), i251) → 1532_0_mk_InvokeMethod(EOS(STATIC_1532(i265)), i251)
1532_0_mk_InvokeMethod(EOS(STATIC_1532(i265)), i251) → 1537_0_<init>_Load(EOS(STATIC_1537(i265)), i251)
1537_0_<init>_Load(EOS(STATIC_1537(i265)), i251) → 1545_0_<init>_InvokeMethod(EOS(STATIC_1545(i265)), i251)
1545_0_<init>_InvokeMethod(EOS(STATIC_1545(i265)), i251) → 1556_0_<init>_Load(EOS(STATIC_1556(i265)), i251)
1556_0_<init>_Load(EOS(STATIC_1556(i265)), i251) → 1561_0_<init>_Load(EOS(STATIC_1561(i265)), i251)
1561_0_<init>_Load(EOS(STATIC_1561(i265)), i251) → 1567_0_<init>_FieldAccess(EOS(STATIC_1567(i265)), i251)
1567_0_<init>_FieldAccess(EOS(STATIC_1567(i265)), i251) → 1573_0_<init>_Load(EOS(STATIC_1573(i265)), i251)
1573_0_<init>_Load(EOS(STATIC_1573(i265)), i251) → 1579_0_<init>_Load(EOS(STATIC_1579(i265)), i251)
1579_0_<init>_Load(EOS(STATIC_1579(i265)), i251) → 1585_0_<init>_FieldAccess(EOS(STATIC_1585(i265)), i251)
1585_0_<init>_FieldAccess(EOS(STATIC_1585(i265)), i251) → 1595_0_<init>_Return(EOS(STATIC_1595(i265)), i251)
1595_0_<init>_Return(EOS(STATIC_1595(i265)), i251) → 1600_0_mk_Store(EOS(STATIC_1600(i265)), i251)
1600_0_mk_Store(EOS(STATIC_1600(i265)), i251) → 1606_0_mk_JMP(EOS(STATIC_1606(i265)), i251)
1606_0_mk_JMP(EOS(STATIC_1606(i265)), i251) → 1613_0_mk_Load(EOS(STATIC_1613(i265)), i251)
1613_0_mk_Load(EOS(STATIC_1613(i265)), i251) → 1414_0_mk_Load(EOS(STATIC_1414(i265)), i251)
1414_0_mk_Load(EOS(STATIC_1414(i247)), i248) → 1418_0_mk_Inc(EOS(STATIC_1418(i247)), i248, i248)
1448_0_random_LT(EOS(STATIC_1448(i247)), i251, i247, i26) → 1451_0_random_ConstantStackPush(EOS(STATIC_1451(i247)), i251) | >=(i247, i26)
1451_0_random_ConstantStackPush(EOS(STATIC_1451(i247)), i251) → 1454_0_random_Return(EOS(STATIC_1454(i247)), i251)
1454_0_random_Return(EOS(STATIC_1454(i247)), i251) → 1458_0_mk_Load(EOS(STATIC_1458(i247)), i251)
1458_0_mk_Load(EOS(STATIC_1458(i247)), i251) → 1462_0_mk_InvokeMethod(EOS(STATIC_1462(i247)), i251)
1462_0_mk_InvokeMethod(EOS(STATIC_1462(i247)), i251) → 1467_0_<init>_Load(EOS(STATIC_1467(i247)), i251)
1467_0_<init>_Load(EOS(STATIC_1467(i247)), i251) → 1474_0_<init>_InvokeMethod(EOS(STATIC_1474(i247)), i251)
1474_0_<init>_InvokeMethod(EOS(STATIC_1474(i247)), i251) → 1479_0_<init>_Load(EOS(STATIC_1479(i247)), i251)
1479_0_<init>_Load(EOS(STATIC_1479(i247)), i251) → 1483_0_<init>_Load(EOS(STATIC_1483(i247)), i251)
1483_0_<init>_Load(EOS(STATIC_1483(i247)), i251) → 1486_0_<init>_FieldAccess(EOS(STATIC_1486(i247)), i251)
1486_0_<init>_FieldAccess(EOS(STATIC_1486(i247)), i251) → 1489_0_<init>_Load(EOS(STATIC_1489(i247)), i251)
1489_0_<init>_Load(EOS(STATIC_1489(i247)), i251) → 1494_0_<init>_Load(EOS(STATIC_1494(i247)), i251)
1494_0_<init>_Load(EOS(STATIC_1494(i247)), i251) → 1501_0_<init>_FieldAccess(EOS(STATIC_1501(i247)), i251)
1501_0_<init>_FieldAccess(EOS(STATIC_1501(i247)), i251) → 1505_0_<init>_Return(EOS(STATIC_1505(i247)), i251)
1505_0_<init>_Return(EOS(STATIC_1505(i247)), i251) → 1509_0_mk_Store(EOS(STATIC_1509(i247)), i251)
1509_0_mk_Store(EOS(STATIC_1509(i247)), i251) → 1515_0_mk_JMP(EOS(STATIC_1515(i247)), i251)
1515_0_mk_JMP(EOS(STATIC_1515(i247)), i251) → 1522_0_mk_Load(EOS(STATIC_1522(i247)), i251)
1522_0_mk_Load(EOS(STATIC_1522(i247)), i251) → 1414_0_mk_Load(EOS(STATIC_1414(i247)), i251)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1418_0_mk_Inc(EOS(STATIC_1418(x0)), x1, x1) → 1418_0_mk_Inc(EOS(STATIC_1418(+(x0, 1))), +(x1, -1), +(x1, -1)) | &&(>(x1, 0), >(+(x0, 1), 0))
1418_0_mk_Inc(EOS(STATIC_1418(x0)), x1, x1) → 1418_0_mk_Inc(EOS(STATIC_1418(x0)), +(x1, -1), +(x1, -1)) | >(x1, 0)
R rules:

Filtered duplicate args:



1418_0_mk_Inc(x1, x2, x3) → 1418_0_mk_Inc(x1, x3)
Cond_1418_0_mk_Inc(x1, x2, x3, x4) → Cond_1418_0_mk_Inc(x1, x2, x4)
Cond_1418_0_mk_Inc1(x1, x2, x3, x4) → Cond_1418_0_mk_Inc1(x1, x2, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1418_0_mk_Inc(EOS(STATIC_1418(x0)), x1) → 1418_0_mk_Inc(EOS(STATIC_1418(+(x0, 1))), +(x1, -1)) | &&(>(x1, 0), >(x0, -1))
1418_0_mk_Inc(EOS(STATIC_1418(x0)), x1) → 1418_0_mk_Inc(EOS(STATIC_1418(x0)), +(x1, -1)) | >(x1, 0)
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1418(x0)), x1)
COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0, 1))), +(x1, -1))
1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC1(>(x1, 0), EOS(STATIC_1418(x0)), x1)
COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(x0)), +(x1, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0]) → COND_1418_0_MK_INC(x1[0] > 0 && x0[0] > -1, EOS(STATIC_1418(x0[0])), x1[0])
(1): COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[1] + 1)), x1[1] + -1)
(2): 1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2]) → COND_1418_0_MK_INC1(x1[2] > 0, EOS(STATIC_1418(x0[2])), x1[2])
(3): COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[3])), x1[3] + -1)

(0) -> (1), if (x1[0] > 0 && x0[0] > -1EOS(STATIC_1418(x0[0])) →* EOS(STATIC_1418(x0[1]))∧x1[0]* x1[1])


(1) -> (0), if (EOS(STATIC_1418(x0[1] + 1)) →* EOS(STATIC_1418(x0[0]))∧x1[1] + -1* x1[0])


(1) -> (2), if (EOS(STATIC_1418(x0[1] + 1)) →* EOS(STATIC_1418(x0[2]))∧x1[1] + -1* x1[2])


(2) -> (3), if (x1[2] > 0EOS(STATIC_1418(x0[2])) →* EOS(STATIC_1418(x0[3]))∧x1[2]* x1[3])


(3) -> (0), if (EOS(STATIC_1418(x0[3])) →* EOS(STATIC_1418(x0[0]))∧x1[3] + -1* x1[0])


(3) -> (2), if (EOS(STATIC_1418(x0[3])) →* EOS(STATIC_1418(x0[2]))∧x1[3] + -1* x1[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@1cd4afd4 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1418(x0)), x1) the following chains were created:
  • We consider the chain 1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0]) → COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0]), COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1]) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1)) which results in the following constraint:

    (1)    (&&(>(x1[0], 0), >(x0[0], -1))=TRUEEOS(STATIC_1418(x0[0]))=EOS(STATIC_1418(x0[1]))∧x1[0]=x1[1]1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0])≥NonInfC∧1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0])≥COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])∧(UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], 0)=TRUE>(x0[0], -1)=TRUE1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0])≥NonInfC∧1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0])≥COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])∧(UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0, 1))), +(x1, -1)) the following chains were created:
  • We consider the chain COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1]) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1)) which results in the following constraint:

    (7)    (COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1])≥NonInfC∧COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1])≥1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))∧(UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







For Pair 1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC1(>(x1, 0), EOS(STATIC_1418(x0)), x1) the following chains were created:
  • We consider the chain 1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2]) → COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2]), COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1)) which results in the following constraint:

    (12)    (>(x1[2], 0)=TRUEEOS(STATIC_1418(x0[2]))=EOS(STATIC_1418(x0[3]))∧x1[2]=x1[3]1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2])≥NonInfC∧1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2])≥COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])∧(UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥))



    We simplified constraint (12) using rules (I), (II), (IV) which results in the following new constraint:

    (13)    (>(x1[2], 0)=TRUE1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2])≥NonInfC∧1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2])≥COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])∧(UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧0 = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧0 = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(x0)), +(x1, -1)) the following chains were created:
  • We consider the chain COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1)) which results in the following constraint:

    (19)    (COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3])≥NonInfC∧COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3])≥1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))∧(UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥))



    We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (20)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (21)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (22) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (23)    ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1418(x0)), x1)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0, 1))), +(x1, -1))
    • ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)

  • 1418_0_MK_INC(EOS(STATIC_1418(x0)), x1) → COND_1418_0_MK_INC1(>(x1, 0), EOS(STATIC_1418(x0)), x1)
    • (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])), ≥)∧0 = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

  • COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0)), x1) → 1418_0_MK_INC(EOS(STATIC_1418(x0)), +(x1, -1))
    • ((UIncreasing(1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1418_0_MK_INC(x1, x2)) = [1] + x2   
POL(EOS(x1)) = x1   
POL(STATIC_1418(x1)) = x1   
POL(COND_1418_0_MK_INC(x1, x2, x3)) = [1] + x3   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(-1) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(COND_1418_0_MK_INC1(x1, x2, x3)) = [1] + x3   

The following pairs are in P>:

COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1]) → 1418_0_MK_INC(EOS(STATIC_1418(+(x0[1], 1))), +(x1[1], -1))
COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[3])), +(x1[3], -1))

The following pairs are in Pbound:

1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0]) → COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])
1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2]) → COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])

The following pairs are in P:

1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0]) → COND_1418_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1418(x0[0])), x1[0])
1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2]) → COND_1418_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1418(x0[2])), x1[2])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1418_0_MK_INC(EOS(STATIC_1418(x0[0])), x1[0]) → COND_1418_0_MK_INC(x1[0] > 0 && x0[0] > -1, EOS(STATIC_1418(x0[0])), x1[0])
(2): 1418_0_MK_INC(EOS(STATIC_1418(x0[2])), x1[2]) → COND_1418_0_MK_INC1(x1[2] > 0, EOS(STATIC_1418(x0[2])), x1[2])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1418_0_MK_INC(TRUE, EOS(STATIC_1418(x0[1])), x1[1]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[1] + 1)), x1[1] + -1)
(3): COND_1418_0_MK_INC1(TRUE, EOS(STATIC_1418(x0[3])), x1[3]) → 1418_0_MK_INC(EOS(STATIC_1418(x0[3])), x1[3] + -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE