(0) Obligation:

JBC Problem based on JBC Program:
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB12 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x > 0 || y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaB12.main([Ljava/lang/String;)V: Graph of 186 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaB12.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses:
  • Used field analysis yielded the following read fields:
  • Marker field analysis yielded the following relations that could be markers:

(5) SCCToIntTRSProof (SOUND transformation)

Transformed FIGraph SCCs to intTRSs. Log:

Generated rules. Obtained 20 IRules

P rules:
f348_0_main_GT(EOS, matching1, i48, matching2) → f356_0_main_GT(EOS, 0, i48, 0) | &&(=(matching1, 0), =(matching2, 0))
f348_0_main_GT(EOS, i56, i48, i56) → f357_0_main_GT(EOS, i56, i48, i56)
f356_0_main_GT(EOS, matching1, i48, matching2) → f374_0_main_Load(EOS, 0, i48) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
f374_0_main_Load(EOS, matching1, i48) → f386_0_main_LE(EOS, 0, i48, i48) | =(matching1, 0)
f386_0_main_LE(EOS, matching1, i64, i64) → f399_0_main_LE(EOS, 0, i64, i64) | =(matching1, 0)
f399_0_main_LE(EOS, matching1, i64, i64) → f417_0_main_Load(EOS, 0, i64) | &&(>(i64, 0), =(matching1, 0))
f417_0_main_Load(EOS, matching1, i64) → f435_0_main_LE(EOS, 0, i64, 0) | =(matching1, 0)
f435_0_main_LE(EOS, matching1, i64, matching2) → f476_0_main_Load(EOS, 0, i64) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
f476_0_main_Load(EOS, matching1, i64) → f914_0_main_LE(EOS, 0, i64, i64) | =(matching1, 0)
f914_0_main_LE(EOS, matching1, i64, i64) → f924_0_main_Inc(EOS, 0, i64) | &&(>(i64, 0), =(matching1, 0))
f924_0_main_Inc(EOS, matching1, i64) → f931_0_main_JMP(EOS, 0, +(i64, -1)) | &&(>(i64, 0), =(matching1, 0))
f931_0_main_JMP(EOS, matching1, i160) → f942_0_main_Load(EOS, 0, i160) | =(matching1, 0)
f942_0_main_Load(EOS, matching1, i160) → f338_0_main_Load(EOS, 0, i160) | =(matching1, 0)
f338_0_main_Load(EOS, i18, i48) → f348_0_main_GT(EOS, i18, i48, i18)
f357_0_main_GT(EOS, i56, i48, i56) → f376_0_main_Load(EOS, i56, i48) | >(i56, 0)
f376_0_main_Load(EOS, i56, i48) → f389_0_main_LE(EOS, i56, i48, i56)
f389_0_main_LE(EOS, i56, i48, i56) → f401_0_main_Inc(EOS, i56, i48) | >(i56, 0)
f401_0_main_Inc(EOS, i56, i48) → f419_0_main_JMP(EOS, +(i56, -1), i48) | >(i56, 0)
f419_0_main_JMP(EOS, i66, i48) → f465_0_main_Load(EOS, i66, i48)
f465_0_main_Load(EOS, i66, i48) → f338_0_main_Load(EOS, i66, i48)

Combined rules. Obtained 2 IRules

P rules:
f348_0_main_GT(EOS, 0, x1, 0) → f348_0_main_GT(EOS, 0, -(x1, 1), 0) | >(x1, 0)
f348_0_main_GT(EOS, x0, x1, x0) → f348_0_main_GT(EOS, -(x0, 1), x1, -(x0, 1)) | >(x0, 0)

Filtered ground terms:


f348_0_main_GT(x1, x2, x3, x4) → f348_0_main_GT(x2, x3, x4)
Cond_f348_0_main_GT(x1, x2, x3, x4, x5) → Cond_f348_0_main_GT(x1, x4)
Cond_f348_0_main_GT1(x1, x2, x3, x4, x5) → Cond_f348_0_main_GT1(x1, x3, x4, x5)

Filtered duplicate terms:


f348_0_main_GT(x1, x2, x3) → f348_0_main_GT(x2, x3)
Cond_f348_0_main_GT1(x1, x2, x3, x4) → Cond_f348_0_main_GT1(x1, x3, x4)

Prepared 2 rules for path length conversion:

P rules:
f348_0_main_GT(x1, 0) → f348_0_main_GT(-(x1, 1), 0) | >(x1, 0)
f348_0_main_GT(x1, x0) → f348_0_main_GT(x1, -(x0, 1)) | >(x0, 0)

Finished conversion. Obtained 2 rules.

P rules:
f348_0_main_GT(x0, c0) → f348_0_main_GT(-(x0, 1), 0) | &&(>(x0, 0), =(0, c0))
f348_0_main_GT(x1, x2) → f348_0_main_GT(x1, -(x2, 1)) | >(x2, 0)

(6) Obligation:

Rules:
f348_0_main_GT(x0, c0) → f348_0_main_GT(-(x0, 1), 0) | &&(>(x0, 0), =(0, c0))
f348_0_main_GT(x1, x2) → f348_0_main_GT(x1, -(x2, 1)) | >(x2, 0)

(7) TerminationGraphProcessor (SOUND transformation)

Constructed the termination graph and obtained 2 non-trivial SCCs.


(8) Complex Obligation (AND)

(9) Obligation:

Rules:
f348_0_main_GT(x2, x3) → f348_0_main_GT(x2, -(x3, 1)) | >(x3, 0)

(10) PolynomialOrderProcessor (EQUIVALENT transformation)

Found the following polynomial interpretation:


[f348_0_main_GT(x3, x5)] = x5

Therefore the following rule(s) have been dropped:


f348_0_main_GT(x0, x1) → f348_0_main_GT(x0, -(x1, 1)) | >(x1, 0)

(11) YES

(12) Obligation:

Rules:
f348_0_main_GT(x0, x1) → f348_0_main_GT(-(x0, 1), 0) | &&(>(x0, 0), =(0, x1))

(13) PolynomialOrderProcessor (EQUIVALENT transformation)

Found the following polynomial interpretation:


[f348_0_main_GT(x3, x5)] = x3 + c6·x5

Therefore the following rule(s) have been dropped:


f348_0_main_GT(x0, x1) → f348_0_main_GT(-(x0, 1), 0) | &&(>(x0, 0), =(0, x1))

(14) YES