(0) Obligation:

JBC Problem based on JBC Program:
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaA6 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();

while (x > y + z) {
y++;
z++;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaA6.main([Ljava/lang/String;)V: Graph of 244 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaA6.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses:
  • Used field analysis yielded the following read fields:
  • Marker field analysis yielded the following relations that could be markers:

(5) SCCToIntTRSProof (SOUND transformation)

Transformed FIGraph SCCs to intTRSs. Log:

Generated rules. Obtained 10 IRules

P rules:
f657_0_main_Load(EOS, i18, i50, i123, i18) → f666_0_main_Load(EOS, i18, i50, i123, i18, i50)
f666_0_main_Load(EOS, i18, i50, i123, i18, i50) → f686_0_main_IntArithmetic(EOS, i18, i50, i123, i18, i50, i123)
f686_0_main_IntArithmetic(EOS, i18, i50, i123, i18, i50, i123) → f697_0_main_LE(EOS, i18, i50, i123, i18, +(i50, i123)) | &&(>=(i50, 0), >=(i123, 0))
f697_0_main_LE(EOS, i18, i50, i123, i18, i143) → f708_0_main_LE(EOS, i18, i50, i123, i18, i143)
f708_0_main_LE(EOS, i18, i50, i123, i18, i143) → f725_0_main_Inc(EOS, i18, i50, i123) | >(i18, i143)
f725_0_main_Inc(EOS, i18, i50, i123) → f742_0_main_Inc(EOS, i18, +(i50, 1), i123) | >=(i50, 0)
f742_0_main_Inc(EOS, i18, i152, i123) → f757_0_main_JMP(EOS, i18, i152, +(i123, 1)) | >=(i123, 0)
f757_0_main_JMP(EOS, i18, i152, i156) → f797_0_main_Load(EOS, i18, i152, i156)
f797_0_main_Load(EOS, i18, i152, i156) → f647_0_main_Load(EOS, i18, i152, i156)
f647_0_main_Load(EOS, i18, i50, i123) → f657_0_main_Load(EOS, i18, i50, i123, i18)

Combined rules. Obtained 1 IRules

P rules:
f657_0_main_Load(EOS, x0, x1, x2, x0) → f657_0_main_Load(EOS, x0, +(x1, 1), +(x2, 1), x0) | &&(&&(>(+(x2, 1), 0), >(+(x1, 1), 0)), <(+(x1, x2), x0))

Filtered ground terms:


f657_0_main_Load(x1, x2, x3, x4, x5) → f657_0_main_Load(x2, x3, x4, x5)
Cond_f657_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_f657_0_main_Load(x1, x3, x4, x5, x6)

Filtered duplicate terms:


f657_0_main_Load(x1, x2, x3, x4) → f657_0_main_Load(x2, x3, x4)
Cond_f657_0_main_Load(x1, x2, x3, x4, x5) → Cond_f657_0_main_Load(x1, x3, x4, x5)

Prepared 1 rules for path length conversion:

P rules:
f657_0_main_Load(x1, x2, x0) → f657_0_main_Load(+(x1, 1), +(x2, 1), x0) | &&(&&(>(+(x2, 1), 0), >(+(x1, 1), 0)), <(+(x1, x2), x0))

Finished conversion. Obtained 1 rules.

P rules:
f657_0_main_Load(x0, x1, x2) → f657_0_main_Load(+(x0, 1), +(x1, 1), x2) | &&(&&(>(x2, +(x0, x1)), >(x0, -1)), >(x1, -1))

(6) Obligation:

Rules:
f657_0_main_Load(x0, x1, x2) → f657_0_main_Load(+(x0, 1), +(x1, 1), x2) | &&(&&(>(x2, +(x0, x1)), >(x0, -1)), >(x1, -1))

(7) PolynomialOrderProcessor (EQUIVALENT transformation)

Found the following polynomial interpretation:


[f657_0_main_Load(x4, x6, x8)] = -x4 - x6 + x8

Therefore the following rule(s) have been dropped:


f657_0_main_Load(x0, x1, x2) → f657_0_main_Load(+(x0, 1), +(x1, 1), x2) | &&(&&(>(x2, +(x0, x1)), >(x0, -1)), >(x1, -1))

(8) YES