(0) Obligation:

JBC Problem based on JBC Program:
public class LogAG{

// adapted from Arts&Giesl, 2001

public static int half(int x) {

int res = 0;

while (x > 1) {

x = x-2;
res++;

}

return res;

}


public static int log(int x) {

int res = 0;

while (x > 1) {

x = half(x-2)+1;
res++;

}

return res;

}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}



public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
LogAG.main([Ljava/lang/String;)V: Graph of 145 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: LogAG.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses:
  • Used field analysis yielded the following read fields:
  • Marker field analysis yielded the following relations that could be markers:

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 35 rules for P and 0 rules for R.


P rules:
f1741_0_log_ConstantStackPush(EOS(STATIC_1741), i371, i371) → f1744_0_log_LE(EOS(STATIC_1744), i371, i371, 1)
f1744_0_log_LE(EOS(STATIC_1744), i387, i387, matching1) → f1747_0_log_LE(EOS(STATIC_1747), i387, i387, 1) | =(matching1, 1)
f1747_0_log_LE(EOS(STATIC_1747), i387, i387, matching1) → f1752_0_log_Load(EOS(STATIC_1752), i387) | &&(>(i387, 1), =(matching1, 1))
f1752_0_log_Load(EOS(STATIC_1752), i387) → f1756_0_log_ConstantStackPush(EOS(STATIC_1756), i387)
f1756_0_log_ConstantStackPush(EOS(STATIC_1756), i387) → f1760_0_log_IntArithmetic(EOS(STATIC_1760), i387, 2)
f1760_0_log_IntArithmetic(EOS(STATIC_1760), i387, matching1) → f1764_0_log_InvokeMethod(EOS(STATIC_1764), -(i387, 2)) | &&(>(i387, 0), =(matching1, 2))
f1764_0_log_InvokeMethod(EOS(STATIC_1764), i389) → f1768_0_half_ConstantStackPush(EOS(STATIC_1768), i389, i389)
f1768_0_half_ConstantStackPush(EOS(STATIC_1768), i389, i389) → f1770_0_half_Store(EOS(STATIC_1770), i389, i389, 0)
f1770_0_half_Store(EOS(STATIC_1770), i389, i389, matching1) → f1772_0_half_Load(EOS(STATIC_1772), i389, i389, 0) | =(matching1, 0)
f1772_0_half_Load(EOS(STATIC_1772), i389, i389, matching1) → f1824_0_half_Load(EOS(STATIC_1824), i389, i389, 0) | =(matching1, 0)
f1824_0_half_Load(EOS(STATIC_1824), i398, i396, i397) → f1877_0_half_Load(EOS(STATIC_1877), i398, i396, i397)
f1877_0_half_Load(EOS(STATIC_1877), i398, i412, i413) → f1932_0_half_Load(EOS(STATIC_1932), i398, i412, i413)
f1932_0_half_Load(EOS(STATIC_1932), i398, i425, i426) → f1988_0_half_Load(EOS(STATIC_1988), i398, i425, i426)
f1988_0_half_Load(EOS(STATIC_1988), i398, i440, i441) → f1992_0_half_ConstantStackPush(EOS(STATIC_1992), i398, i440, i441, i440)
f1992_0_half_ConstantStackPush(EOS(STATIC_1992), i398, i440, i441, i440) → f1995_0_half_LE(EOS(STATIC_1995), i398, i440, i441, i440, 1)
f1995_0_half_LE(EOS(STATIC_1995), i398, i447, i441, i447, matching1) → f1998_0_half_LE(EOS(STATIC_1998), i398, i447, i441, i447, 1) | =(matching1, 1)
f1995_0_half_LE(EOS(STATIC_1995), i398, i448, i441, i448, matching1) → f1999_0_half_LE(EOS(STATIC_1999), i398, i448, i441, i448, 1) | =(matching1, 1)
f1998_0_half_LE(EOS(STATIC_1998), i398, i447, i441, i447, matching1) → f2002_0_half_Load(EOS(STATIC_2002), i398, i441) | &&(<=(i447, 1), =(matching1, 1))
f2002_0_half_Load(EOS(STATIC_2002), i398, i441) → f2006_0_half_Return(EOS(STATIC_2006), i398, i441)
f2006_0_half_Return(EOS(STATIC_2006), i398, i441) → f2010_0_log_ConstantStackPush(EOS(STATIC_2010), i441)
f2010_0_log_ConstantStackPush(EOS(STATIC_2010), i441) → f2014_0_log_IntArithmetic(EOS(STATIC_2014), i441, 1)
f2014_0_log_IntArithmetic(EOS(STATIC_2014), i441, matching1) → f2018_0_log_Store(EOS(STATIC_2018), +(i441, 1)) | &&(>=(i441, 0), =(matching1, 1))
f2018_0_log_Store(EOS(STATIC_2018), i451) → f2022_0_log_Inc(EOS(STATIC_2022), i451)
f2022_0_log_Inc(EOS(STATIC_2022), i451) → f2026_0_log_JMP(EOS(STATIC_2026), i451)
f2026_0_log_JMP(EOS(STATIC_2026), i451) → f2043_0_log_Load(EOS(STATIC_2043), i451)
f2043_0_log_Load(EOS(STATIC_2043), i451) → f1671_0_log_Load(EOS(STATIC_1671), i451)
f1671_0_log_Load(EOS(STATIC_1671), i371) → f1741_0_log_ConstantStackPush(EOS(STATIC_1741), i371, i371)
f1999_0_half_LE(EOS(STATIC_1999), i398, i448, i441, i448, matching1) → f2004_0_half_Load(EOS(STATIC_2004), i398, i448, i441) | &&(>(i448, 1), =(matching1, 1))
f2004_0_half_Load(EOS(STATIC_2004), i398, i448, i441) → f2008_0_half_ConstantStackPush(EOS(STATIC_2008), i398, i441, i448)
f2008_0_half_ConstantStackPush(EOS(STATIC_2008), i398, i441, i448) → f2012_0_half_IntArithmetic(EOS(STATIC_2012), i398, i441, i448, 2)
f2012_0_half_IntArithmetic(EOS(STATIC_2012), i398, i441, i448, matching1) → f2016_0_half_Store(EOS(STATIC_2016), i398, i441, -(i448, 2)) | &&(>(i448, 0), =(matching1, 2))
f2016_0_half_Store(EOS(STATIC_2016), i398, i441, i450) → f2020_0_half_Inc(EOS(STATIC_2020), i398, i450, i441)
f2020_0_half_Inc(EOS(STATIC_2020), i398, i450, i441) → f2024_0_half_JMP(EOS(STATIC_2024), i398, i450, +(i441, 1)) | >=(i441, 0)
f2024_0_half_JMP(EOS(STATIC_2024), i398, i450, i452) → f2035_0_half_Load(EOS(STATIC_2035), i398, i450, i452)
f2035_0_half_Load(EOS(STATIC_2035), i398, i450, i452) → f1988_0_half_Load(EOS(STATIC_1988), i398, i450, i452)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
f1995_0_half_LE(EOS(STATIC_1995), x0, x1, x2, x1, 1) → f1995_0_half_LE(EOS(STATIC_1995), -(x2, 1), -(x2, 1), 0, -(x2, 1), 1) | &&(>(x2, 0), <=(x1, 1))
f1995_0_half_LE(EOS(STATIC_1995), x0, x1, x2, x1, 1) → f1995_0_half_LE(EOS(STATIC_1995), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(x1, 1), >(+(x2, 1), 0))
R rules:

Filtered ground terms:



f1995_0_half_LE(x1, x2, x3, x4, x5, x6) → f1995_0_half_LE(x2, x3, x4, x5)
Cond_f1995_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_f1995_0_half_LE(x1, x3, x4, x5, x6)
Cond_f1995_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_f1995_0_half_LE1(x1, x3, x4, x5, x6)
EOS(x1) → EOS

Filtered unneeded arguments:



f1995_0_half_LE(x1, x2, x3, x4) → f1995_0_half_LE(x2, x3, x4)
Cond_f1995_0_half_LE(x1, x2, x3, x4, x5) → Cond_f1995_0_half_LE(x1, x3, x4, x5)
Cond_f1995_0_half_LE1(x1, x2, x3, x4, x5) → Cond_f1995_0_half_LE1(x1, x3, x4, x5)

Filtered duplicate args:



f1995_0_half_LE(x1, x2, x3) → f1995_0_half_LE(x2, x3)
Cond_f1995_0_half_LE(x1, x2, x3, x4) → Cond_f1995_0_half_LE(x1, x3, x4)
Cond_f1995_0_half_LE1(x1, x2, x3, x4) → Cond_f1995_0_half_LE1(x1, x3, x4)

Filtered unneeded arguments:



Cond_f1995_0_half_LE(x1, x2, x3) → Cond_f1995_0_half_LE(x1, x2)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
F1995_0_HALF_LE(x2, x1) → F1995_0_HALF_LE(0, -(x2, 1)) | &&(<=(x1, 1), >(x2, 0))
F1995_0_HALF_LE(x2, x1) → F1995_0_HALF_LE(+(x2, 1), -(x1, 2)) | &&(>(x1, 1), >(x2, -1))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE(&&(<=(x1, 1), >(x2, 0)), x2, x1)
COND_F1995_0_HALF_LE(TRUE, x2, x1) → F1995_0_HALF_LE'(0, -(x2, 1))
F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE1(&&(>(x1, 1), >(x2, -1)), x2, x1)
COND_F1995_0_HALF_LE1(TRUE, x2, x1) → F1995_0_HALF_LE'(+(x2, 1), -(x1, 2))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(x1[0] <= 1 && x2[0] > 0, x2[0], x1[0])
(1): COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, x2[1] - 1)
(2): F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(x1[2] > 1 && x2[2] > -1, x2[2], x1[2])
(3): COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(x2[3] + 1, x1[3] - 2)

(0) -> (1), if (x1[0] <= 1 && x2[0] > 0x2[0]* x2[1]x1[0]* x1[1])


(1) -> (0), if (0* x2[0]x2[1] - 1* x1[0])


(1) -> (2), if (0* x2[2]x2[1] - 1* x1[2])


(2) -> (3), if (x1[2] > 1 && x2[2] > -1x2[2]* x2[3]x1[2]* x1[3])


(3) -> (0), if (x2[3] + 1* x2[0]x1[3] - 2* x1[0])


(3) -> (2), if (x2[3] + 1* x2[2]x1[3] - 2* x1[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@71660c8c Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 3 Max Right Steps: 2

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE(&&(<=(x1, 1), >(x2, 0)), x2, x1) the following chains were created:
  • We consider the chain F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)) which results in the following constraint:

    (1)    (&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]F1995_0_HALF_LE'(x2[0], x1[0])≥NonInfC∧F1995_0_HALF_LE'(x2[0], x1[0])≥COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])∧(UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(x1[0], 1)=TRUE>(x2[0], 0)=TRUEF1995_0_HALF_LE'(x2[0], x1[0])≥NonInfC∧F1995_0_HALF_LE'(x2[0], x1[0])≥COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])∧(UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)


    (8)    ([1] + x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_F1995_0_HALF_LE(TRUE, x2, x1) → F1995_0_HALF_LE'(0, -(x2, 1)) the following chains were created:
  • We consider the chain F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)) which results in the following constraint:

    (9)    (&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(x2[1], 1)=x1[0]1&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[0]2-(x2[1]1, 1)=x1[0]2&&(<=(x1[0]2, 1), >(x2[0]2, 0))=TRUEx2[0]2=x2[1]2x1[0]2=x1[1]2COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥F1995_0_HALF_LE'(0, -(x2[1]1, 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1]1, 1))), ≥))



    We solved constraint (9) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (10)    (&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(x2[1], 1)=x1[0]1&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]10=x2[2]-(x2[1]1, 1)=x1[2]&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥F1995_0_HALF_LE'(0, -(x2[1]1, 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1]1, 1))), ≥))



    We solved constraint (10) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)) which results in the following constraint:

    (11)    (&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[0]1-(x2[1], 1)=x1[0]1&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥F1995_0_HALF_LE'(0, -(x2[1], 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))



    We solved constraint (11) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (12)    (&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]-(x1[3], 2)=x1[0]&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]1-(x2[1], 1)=x1[2]1&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥F1995_0_HALF_LE'(0, -(x2[1], 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))



    We simplified constraint (12) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (13)    (>(x1[2], 1)=TRUE>(x2[2], -1)=TRUE<=(-(x1[2], 2), 1)=TRUE>(+(x2[2], 1), 0)=TRUE>(-(+(x2[2], 1), 1), 1)=TRUECOND_F1995_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(0, -(+(x2[2], 1), 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[1 + (-1)bso_20] + x1[2] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[1 + (-1)bso_20] + x1[2] ≥ 0)







For Pair F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE1(&&(>(x1, 1), >(x2, -1)), x2, x1) the following chains were created:
  • We consider the chain F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (19)    (&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]F1995_0_HALF_LE'(x2[2], x1[2])≥NonInfC∧F1995_0_HALF_LE'(x2[2], x1[2])≥COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])∧(UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥))



    We simplified constraint (19) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (20)    (>(x1[2], 1)=TRUE>(x2[2], -1)=TRUEF1995_0_HALF_LE'(x2[2], x1[2])≥NonInfC∧F1995_0_HALF_LE'(x2[2], x1[2])≥COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])∧(UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)







For Pair COND_F1995_0_HALF_LE1(TRUE, x2, x1) → F1995_0_HALF_LE'(+(x2, 1), -(x1, 2)) the following chains were created:
  • We consider the chain F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)) which results in the following constraint:

    (25)    (&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]-(x2[1], 1)=x1[2]&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[0]1-(x1[3], 2)=x1[0]1&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUEx2[0]1=x2[1]1x1[0]1=x1[1]1COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (25) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (26)    (<=(x1[0], 1)=TRUE>(x2[0], 0)=TRUE>(-(x2[0], 1), 1)=TRUE<=(-(-(x2[0], 1), 2), 1)=TRUECOND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥F1995_0_HALF_LE'(+(0, 1), -(-(x2[0], 1), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (26) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (27)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (28)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (29)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[3] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (31)    ([1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (33)    (&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]0=x2[2]-(x2[1], 1)=x1[2]&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (33) using rules (III), (IV), (IDP_CONSTANT_FOLD), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint:

    (34)    (<=(x1[0], 1)=TRUE>(x2[0], 0)=TRUE>(-(x2[0], 1), 1)=TRUE>(-(-(x2[0], 1), 2), 1)=TRUECOND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥F1995_0_HALF_LE'(+(0, 1), -(-(x2[0], 1), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))



    We simplified constraint (34) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (35)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (36)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (36) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (37)    ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (37) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (38)    ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[-4] + x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    ([1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    ([1] + [-1]x1[0] ≥ 0∧[4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0]), COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1)) which results in the following constraint:

    (42)    (&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[0]-(x1[3]1, 2)=x1[0]&&(<=(x1[0], 1), >(x2[0], 0))=TRUEx2[0]=x2[1]x1[0]=x1[1]COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (42) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (43)    (>(x1[2], 1)=TRUE>(x2[2], -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(x2[2], 1), -1)=TRUE<=(-(-(x1[2], 2), 2), 1)=TRUE>(+(+(x2[2], 1), 1), 0)=TRUECOND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (43) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (44)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (44) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (45)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (45) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (46)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (47)    (x1[2] ≥ 0∧x2[2] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (48)    ([2] + x1[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)), F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2]), COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2)) which results in the following constraint:

    (49)    (&&(>(x1[2], 1), >(x2[2], -1))=TRUEx2[2]=x2[3]x1[2]=x1[3]+(x2[3], 1)=x2[2]1-(x1[3], 2)=x1[2]1&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUEx2[2]1=x2[3]1x1[2]1=x1[3]1+(x2[3]1, 1)=x2[2]2-(x1[3]1, 2)=x1[2]2&&(>(x1[2]2, 1), >(x2[2]2, -1))=TRUEx2[2]2=x2[3]2x1[2]2=x1[3]2COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (49) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (50)    (>(x1[2], 1)=TRUE>(x2[2], -1)=TRUE>(-(x1[2], 2), 1)=TRUE>(+(x2[2], 1), -1)=TRUE>(-(-(x1[2], 2), 2), 1)=TRUE>(+(+(x2[2], 1), 1), -1)=TRUECOND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (x1[2] ≥ 0∧x2[2] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-4] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (55)    ([2] + x1[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (56)    ([4] + x1[2] ≥ 0∧x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE(&&(<=(x1, 1), >(x2, 0)), x2, x1)
    • ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
    • ([1] + x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_F1995_0_HALF_LE(TRUE, x2, x1) → F1995_0_HALF_LE'(0, -(x2, 1))
    • (x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[1 + (-1)bso_20] + x1[2] ≥ 0)

  • F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE1(&&(>(x1, 1), >(x2, -1)), x2, x1)
    • (x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)

  • COND_F1995_0_HALF_LE1(TRUE, x2, x1) → F1995_0_HALF_LE'(+(x2, 1), -(x1, 2))
    • ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • ([2] + x1[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • ([4] + x1[2] ≥ 0∧x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(F1995_0_HALF_LE'(x1, x2)) = [-1] + x2 + x1   
POL(COND_F1995_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(<=(x1, x2)) = [-1]   
POL(1) = [1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_F1995_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(-1) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(2) = [2]   

The following pairs are in P>:

COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1))
COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))

The following pairs are in Pbound:

COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1))
F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])
COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))

The following pairs are in P:

F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])
F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(x1[0] <= 1 && x2[0] > 0, x2[0], x1[0])
(2): F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(x1[2] > 1 && x2[2] > -1, x2[2], x1[2])


The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(10) TRUE