0 JBC
↳1 JBCToGraph (⇒, 606 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 28 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 1131 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
public class LogAG{
// adapted from Arts&Giesl, 2001
public static int half(int x) {
int res = 0;
while (x > 1) {
x = x-2;
res++;
}
return res;
}
public static int log(int x) {
int res = 0;
while (x > 1) {
x = half(x-2)+1;
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 35 rules for P and 0 rules for R.
P rules:
f1741_0_log_ConstantStackPush(EOS(STATIC_1741), i371, i371) → f1744_0_log_LE(EOS(STATIC_1744), i371, i371, 1)
f1744_0_log_LE(EOS(STATIC_1744), i387, i387, matching1) → f1747_0_log_LE(EOS(STATIC_1747), i387, i387, 1) | =(matching1, 1)
f1747_0_log_LE(EOS(STATIC_1747), i387, i387, matching1) → f1752_0_log_Load(EOS(STATIC_1752), i387) | &&(>(i387, 1), =(matching1, 1))
f1752_0_log_Load(EOS(STATIC_1752), i387) → f1756_0_log_ConstantStackPush(EOS(STATIC_1756), i387)
f1756_0_log_ConstantStackPush(EOS(STATIC_1756), i387) → f1760_0_log_IntArithmetic(EOS(STATIC_1760), i387, 2)
f1760_0_log_IntArithmetic(EOS(STATIC_1760), i387, matching1) → f1764_0_log_InvokeMethod(EOS(STATIC_1764), -(i387, 2)) | &&(>(i387, 0), =(matching1, 2))
f1764_0_log_InvokeMethod(EOS(STATIC_1764), i389) → f1768_0_half_ConstantStackPush(EOS(STATIC_1768), i389, i389)
f1768_0_half_ConstantStackPush(EOS(STATIC_1768), i389, i389) → f1770_0_half_Store(EOS(STATIC_1770), i389, i389, 0)
f1770_0_half_Store(EOS(STATIC_1770), i389, i389, matching1) → f1772_0_half_Load(EOS(STATIC_1772), i389, i389, 0) | =(matching1, 0)
f1772_0_half_Load(EOS(STATIC_1772), i389, i389, matching1) → f1824_0_half_Load(EOS(STATIC_1824), i389, i389, 0) | =(matching1, 0)
f1824_0_half_Load(EOS(STATIC_1824), i398, i396, i397) → f1877_0_half_Load(EOS(STATIC_1877), i398, i396, i397)
f1877_0_half_Load(EOS(STATIC_1877), i398, i412, i413) → f1932_0_half_Load(EOS(STATIC_1932), i398, i412, i413)
f1932_0_half_Load(EOS(STATIC_1932), i398, i425, i426) → f1988_0_half_Load(EOS(STATIC_1988), i398, i425, i426)
f1988_0_half_Load(EOS(STATIC_1988), i398, i440, i441) → f1992_0_half_ConstantStackPush(EOS(STATIC_1992), i398, i440, i441, i440)
f1992_0_half_ConstantStackPush(EOS(STATIC_1992), i398, i440, i441, i440) → f1995_0_half_LE(EOS(STATIC_1995), i398, i440, i441, i440, 1)
f1995_0_half_LE(EOS(STATIC_1995), i398, i447, i441, i447, matching1) → f1998_0_half_LE(EOS(STATIC_1998), i398, i447, i441, i447, 1) | =(matching1, 1)
f1995_0_half_LE(EOS(STATIC_1995), i398, i448, i441, i448, matching1) → f1999_0_half_LE(EOS(STATIC_1999), i398, i448, i441, i448, 1) | =(matching1, 1)
f1998_0_half_LE(EOS(STATIC_1998), i398, i447, i441, i447, matching1) → f2002_0_half_Load(EOS(STATIC_2002), i398, i441) | &&(<=(i447, 1), =(matching1, 1))
f2002_0_half_Load(EOS(STATIC_2002), i398, i441) → f2006_0_half_Return(EOS(STATIC_2006), i398, i441)
f2006_0_half_Return(EOS(STATIC_2006), i398, i441) → f2010_0_log_ConstantStackPush(EOS(STATIC_2010), i441)
f2010_0_log_ConstantStackPush(EOS(STATIC_2010), i441) → f2014_0_log_IntArithmetic(EOS(STATIC_2014), i441, 1)
f2014_0_log_IntArithmetic(EOS(STATIC_2014), i441, matching1) → f2018_0_log_Store(EOS(STATIC_2018), +(i441, 1)) | &&(>=(i441, 0), =(matching1, 1))
f2018_0_log_Store(EOS(STATIC_2018), i451) → f2022_0_log_Inc(EOS(STATIC_2022), i451)
f2022_0_log_Inc(EOS(STATIC_2022), i451) → f2026_0_log_JMP(EOS(STATIC_2026), i451)
f2026_0_log_JMP(EOS(STATIC_2026), i451) → f2043_0_log_Load(EOS(STATIC_2043), i451)
f2043_0_log_Load(EOS(STATIC_2043), i451) → f1671_0_log_Load(EOS(STATIC_1671), i451)
f1671_0_log_Load(EOS(STATIC_1671), i371) → f1741_0_log_ConstantStackPush(EOS(STATIC_1741), i371, i371)
f1999_0_half_LE(EOS(STATIC_1999), i398, i448, i441, i448, matching1) → f2004_0_half_Load(EOS(STATIC_2004), i398, i448, i441) | &&(>(i448, 1), =(matching1, 1))
f2004_0_half_Load(EOS(STATIC_2004), i398, i448, i441) → f2008_0_half_ConstantStackPush(EOS(STATIC_2008), i398, i441, i448)
f2008_0_half_ConstantStackPush(EOS(STATIC_2008), i398, i441, i448) → f2012_0_half_IntArithmetic(EOS(STATIC_2012), i398, i441, i448, 2)
f2012_0_half_IntArithmetic(EOS(STATIC_2012), i398, i441, i448, matching1) → f2016_0_half_Store(EOS(STATIC_2016), i398, i441, -(i448, 2)) | &&(>(i448, 0), =(matching1, 2))
f2016_0_half_Store(EOS(STATIC_2016), i398, i441, i450) → f2020_0_half_Inc(EOS(STATIC_2020), i398, i450, i441)
f2020_0_half_Inc(EOS(STATIC_2020), i398, i450, i441) → f2024_0_half_JMP(EOS(STATIC_2024), i398, i450, +(i441, 1)) | >=(i441, 0)
f2024_0_half_JMP(EOS(STATIC_2024), i398, i450, i452) → f2035_0_half_Load(EOS(STATIC_2035), i398, i450, i452)
f2035_0_half_Load(EOS(STATIC_2035), i398, i450, i452) → f1988_0_half_Load(EOS(STATIC_1988), i398, i450, i452)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
f1995_0_half_LE(EOS(STATIC_1995), x0, x1, x2, x1, 1) → f1995_0_half_LE(EOS(STATIC_1995), -(x2, 1), -(x2, 1), 0, -(x2, 1), 1) | &&(>(x2, 0), <=(x1, 1))
f1995_0_half_LE(EOS(STATIC_1995), x0, x1, x2, x1, 1) → f1995_0_half_LE(EOS(STATIC_1995), x0, -(x1, 2), +(x2, 1), -(x1, 2), 1) | &&(>(x1, 1), >(+(x2, 1), 0))
R rules:
Filtered ground terms:
f1995_0_half_LE(x1, x2, x3, x4, x5, x6) → f1995_0_half_LE(x2, x3, x4, x5)
Cond_f1995_0_half_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_f1995_0_half_LE(x1, x3, x4, x5, x6)
Cond_f1995_0_half_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_f1995_0_half_LE1(x1, x3, x4, x5, x6)
EOS(x1) → EOS
Filtered unneeded arguments:
f1995_0_half_LE(x1, x2, x3, x4) → f1995_0_half_LE(x2, x3, x4)
Cond_f1995_0_half_LE(x1, x2, x3, x4, x5) → Cond_f1995_0_half_LE(x1, x3, x4, x5)
Cond_f1995_0_half_LE1(x1, x2, x3, x4, x5) → Cond_f1995_0_half_LE1(x1, x3, x4, x5)
Filtered duplicate args:
f1995_0_half_LE(x1, x2, x3) → f1995_0_half_LE(x2, x3)
Cond_f1995_0_half_LE(x1, x2, x3, x4) → Cond_f1995_0_half_LE(x1, x3, x4)
Cond_f1995_0_half_LE1(x1, x2, x3, x4) → Cond_f1995_0_half_LE1(x1, x3, x4)
Filtered unneeded arguments:
Cond_f1995_0_half_LE(x1, x2, x3) → Cond_f1995_0_half_LE(x1, x2)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
F1995_0_HALF_LE(x2, x1) → F1995_0_HALF_LE(0, -(x2, 1)) | &&(<=(x1, 1), >(x2, 0))
F1995_0_HALF_LE(x2, x1) → F1995_0_HALF_LE(+(x2, 1), -(x1, 2)) | &&(>(x1, 1), >(x2, -1))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE(&&(<=(x1, 1), >(x2, 0)), x2, x1)
COND_F1995_0_HALF_LE(TRUE, x2, x1) → F1995_0_HALF_LE'(0, -(x2, 1))
F1995_0_HALF_LE'(x2, x1) → COND_F1995_0_HALF_LE1(&&(>(x1, 1), >(x2, -1)), x2, x1)
COND_F1995_0_HALF_LE1(TRUE, x2, x1) → F1995_0_HALF_LE'(+(x2, 1), -(x1, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] <= 1 && x2[0] > 0 ∧x2[0] →* x2[1]∧x1[0] →* x1[1])
(1) -> (0), if (0 →* x2[0]∧x2[1] - 1 →* x1[0])
(1) -> (2), if (0 →* x2[2]∧x2[1] - 1 →* x1[2])
(2) -> (3), if (x1[2] > 1 && x2[2] > -1 ∧x2[2] →* x2[3]∧x1[2] →* x1[3])
(3) -> (0), if (x2[3] + 1 →* x2[0]∧x1[3] - 2 →* x1[0])
(3) -> (2), if (x2[3] + 1 →* x2[2]∧x1[3] - 2 →* x1[2])
(1) (&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ F1995_0_HALF_LE'(x2[0], x1[0])≥NonInfC∧F1995_0_HALF_LE'(x2[0], x1[0])≥COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])∧(UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥))
(2) (<=(x1[0], 1)=TRUE∧>(x2[0], 0)=TRUE ⇒ F1995_0_HALF_LE'(x2[0], x1[0])≥NonInfC∧F1995_0_HALF_LE'(x2[0], x1[0])≥COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])∧(UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥))
(3) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(8) ([1] + x1[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])), ≥)∧[(-1)Bound*bni_17] + [(-1)bni_17]x1[0] + [bni_17]x2[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(9) (&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(x2[1], 1)=x1[0]1∧&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[0]2∧-(x2[1]1, 1)=x1[0]2∧&&(<=(x1[0]2, 1), >(x2[0]2, 0))=TRUE∧x2[0]2=x2[1]2∧x1[0]2=x1[1]2 ⇒ COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥F1995_0_HALF_LE'(0, -(x2[1]1, 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1]1, 1))), ≥))
(10) (&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(x2[1], 1)=x1[0]1∧&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1∧0=x2[2]∧-(x2[1]1, 1)=x1[2]∧&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1]1, x1[1]1)≥F1995_0_HALF_LE'(0, -(x2[1]1, 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1]1, 1))), ≥))
(11) (&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[0]1∧-(x2[1], 1)=x1[0]1∧&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥F1995_0_HALF_LE'(0, -(x2[1], 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))
(12) (&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]∧-(x1[3], 2)=x1[0]∧&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]1∧-(x2[1], 1)=x1[2]1∧&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1])≥F1995_0_HALF_LE'(0, -(x2[1], 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))
(13) (>(x1[2], 1)=TRUE∧>(x2[2], -1)=TRUE∧<=(-(x1[2], 2), 1)=TRUE∧>(+(x2[2], 1), 0)=TRUE∧>(-(+(x2[2], 1), 1), 1)=TRUE ⇒ COND_F1995_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(0, -(+(x2[2], 1), 1))∧(UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥))
(14) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)
(15) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)
(16) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[-1 + (-1)bso_20] + x1[2] ≥ 0)
(17) (x1[2] ≥ 0∧x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] ≥ 0∧x2[2] + [-2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[1 + (-1)bso_20] + x1[2] ≥ 0)
(18) (x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧[2] + x2[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(0, -(x2[1], 1))), ≥)∧[(-1)Bound*bni_19 + (2)bni_19] + [bni_19]x1[2] + [bni_19]x2[2] ≥ 0∧[1 + (-1)bso_20] + x1[2] ≥ 0)
(19) (&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3] ⇒ F1995_0_HALF_LE'(x2[2], x1[2])≥NonInfC∧F1995_0_HALF_LE'(x2[2], x1[2])≥COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])∧(UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥))
(20) (>(x1[2], 1)=TRUE∧>(x2[2], -1)=TRUE ⇒ F1995_0_HALF_LE'(x2[2], x1[2])≥NonInfC∧F1995_0_HALF_LE'(x2[2], x1[2])≥COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])∧(UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥))
(21) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(23) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(24) (x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x2[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧-(x2[1], 1)=x1[2]∧&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[0]1∧-(x1[3], 2)=x1[0]1∧&&(<=(x1[0]1, 1), >(x2[0]1, 0))=TRUE∧x2[0]1=x2[1]1∧x1[0]1=x1[1]1 ⇒ COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))
(26) (<=(x1[0], 1)=TRUE∧>(x2[0], 0)=TRUE∧>(-(x2[0], 1), 1)=TRUE∧<=(-(-(x2[0], 1), 2), 1)=TRUE ⇒ COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥F1995_0_HALF_LE'(+(0, 1), -(-(x2[0], 1), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))
(27) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(28) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(29) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧[4] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(30) ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[3] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(31) ([1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(32) ([2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(33) (&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1]∧0=x2[2]∧-(x2[1], 1)=x1[2]∧&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1 ⇒ COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3])≥F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))
(34) (<=(x1[0], 1)=TRUE∧>(x2[0], 0)=TRUE∧>(-(x2[0], 1), 1)=TRUE∧>(-(-(x2[0], 1), 2), 1)=TRUE ⇒ COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, 0, -(x2[0], 1))≥F1995_0_HALF_LE'(+(0, 1), -(-(x2[0], 1), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥))
(35) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(36) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(37) ([1] + [-1]x1[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x2[0] + [-3] ≥ 0∧x2[0] + [-5] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(38) ([1] + [-1]x1[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0∧[-4] + x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(39) ([1] + [-1]x1[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0∧[-2] + x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(40) ([1] + [-1]x1[0] ≥ 0∧[4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(41) ([4] + x2[0] ≥ 0∧[2] + x2[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x2[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(42) (&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[0]∧-(x1[3]1, 2)=x1[0]∧&&(<=(x1[0], 1), >(x2[0], 0))=TRUE∧x2[0]=x2[1]∧x1[0]=x1[1] ⇒ COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(43) (>(x1[2], 1)=TRUE∧>(x2[2], -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧<=(-(-(x1[2], 2), 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), 0)=TRUE ⇒ COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(44) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(45) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(46) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧[5] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(47) (x1[2] ≥ 0∧x2[2] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[3] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(48) ([2] + x1[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[1] + [-1]x1[2] ≥ 0∧x2[2] + [1] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(49) (&&(>(x1[2], 1), >(x2[2], -1))=TRUE∧x2[2]=x2[3]∧x1[2]=x1[3]∧+(x2[3], 1)=x2[2]1∧-(x1[3], 2)=x1[2]1∧&&(>(x1[2]1, 1), >(x2[2]1, -1))=TRUE∧x2[2]1=x2[3]1∧x1[2]1=x1[3]1∧+(x2[3]1, 1)=x2[2]2∧-(x1[3]1, 2)=x1[2]2∧&&(>(x1[2]2, 1), >(x2[2]2, -1))=TRUE∧x2[2]2=x2[3]2∧x1[2]2=x1[3]2 ⇒ COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, x2[3]1, x1[3]1)≥F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(50) (>(x1[2], 1)=TRUE∧>(x2[2], -1)=TRUE∧>(-(x1[2], 2), 1)=TRUE∧>(+(x2[2], 1), -1)=TRUE∧>(-(-(x1[2], 2), 2), 1)=TRUE∧>(+(+(x2[2], 1), 1), -1)=TRUE ⇒ COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥NonInfC∧COND_F1995_0_HALF_LE1(TRUE, +(x2[2], 1), -(x1[2], 2))≥F1995_0_HALF_LE'(+(+(x2[2], 1), 1), -(-(x1[2], 2), 2))∧(UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥))
(51) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(52) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(53) (x1[2] + [-2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-4] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] + [-6] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(54) (x1[2] ≥ 0∧x2[2] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-4] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(55) ([2] + x1[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧[-2] + x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(56) ([4] + x1[2] ≥ 0∧x2[2] ≥ 0∧[2] + x1[2] ≥ 0∧x2[2] + [1] ≥ 0∧x1[2] ≥ 0∧x2[2] + [2] ≥ 0 ⇒ (UIncreasing(F1995_0_HALF_LE'(+(x2[3]1, 1), -(x1[3]1, 2))), ≥)∧[(4)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x2[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(F1995_0_HALF_LE'(x1, x2)) = [-1] + x2 + x1
POL(COND_F1995_0_HALF_LE(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = [-1]
POL(1) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_F1995_0_HALF_LE1(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1
POL(-1) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(2) = [2]
COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1))
COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))
COND_F1995_0_HALF_LE(TRUE, x2[1], x1[1]) → F1995_0_HALF_LE'(0, -(x2[1], 1))
F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])
COND_F1995_0_HALF_LE1(TRUE, x2[3], x1[3]) → F1995_0_HALF_LE'(+(x2[3], 1), -(x1[3], 2))
F1995_0_HALF_LE'(x2[0], x1[0]) → COND_F1995_0_HALF_LE(&&(<=(x1[0], 1), >(x2[0], 0)), x2[0], x1[0])
F1995_0_HALF_LE'(x2[2], x1[2]) → COND_F1995_0_HALF_LE1(&&(>(x1[2], 1), >(x2[2], -1)), x2[2], x1[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer