(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD3
public class GCD3 {
public static int mod(int a, int b) {
if(b == 0) {
return b;
}
if(b < 0) {
a = -a;
}
if(a > 0) {
while(a>=b) {
a -= b;
}
return a;
} else {
while(a < 0) {
a -= b;
}
return a;
}
}

public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
GCD3.main([Ljava/lang/String;)V: Graph of 215 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: GCD3.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 37 rules for P and 0 rules for R.


P rules:
647_0_gcd_LE(EOS(STATIC_647), i66, i97, i97) → 650_0_gcd_LE(EOS(STATIC_650), i66, i97, i97)
650_0_gcd_LE(EOS(STATIC_650), i66, i97, i97) → 654_0_gcd_Load(EOS(STATIC_654), i66, i97) | >(i97, 0)
654_0_gcd_Load(EOS(STATIC_654), i66, i97) → 658_0_gcd_LE(EOS(STATIC_658), i66, i97, i66)
658_0_gcd_LE(EOS(STATIC_658), i99, i97, i99) → 663_0_gcd_LE(EOS(STATIC_663), i99, i97, i99)
663_0_gcd_LE(EOS(STATIC_663), i99, i97, i99) → 670_0_gcd_Load(EOS(STATIC_670), i99, i97) | >(i99, 0)
670_0_gcd_Load(EOS(STATIC_670), i99, i97) → 676_0_gcd_Store(EOS(STATIC_676), i99, i97, i97)
676_0_gcd_Store(EOS(STATIC_676), i99, i97, i97) → 681_0_gcd_Load(EOS(STATIC_681), i99, i97, i97)
681_0_gcd_Load(EOS(STATIC_681), i99, i97, i97) → 686_0_gcd_Load(EOS(STATIC_686), i97, i97, i99)
686_0_gcd_Load(EOS(STATIC_686), i97, i97, i99) → 690_0_gcd_InvokeMethod(EOS(STATIC_690), i97, i99, i97)
690_0_gcd_InvokeMethod(EOS(STATIC_690), i97, i99, i97) → 691_0_mod_Load(EOS(STATIC_691), i97, i99, i97, i99, i97)
691_0_mod_Load(EOS(STATIC_691), i97, i99, i97, i99, i97) → 693_0_mod_NE(EOS(STATIC_693), i97, i99, i97, i99, i97, i97)
693_0_mod_NE(EOS(STATIC_693), i97, i99, i97, i99, i97, i97) → 695_0_mod_Load(EOS(STATIC_695), i97, i99, i97, i99, i97) | >(i97, 0)
695_0_mod_Load(EOS(STATIC_695), i97, i99, i97, i99, i97) → 697_0_mod_GE(EOS(STATIC_697), i97, i99, i97, i99, i97, i97)
697_0_mod_GE(EOS(STATIC_697), i97, i99, i97, i99, i97, i97) → 699_0_mod_Load(EOS(STATIC_699), i97, i99, i97, i99, i97) | >=(i97, 0)
699_0_mod_Load(EOS(STATIC_699), i97, i99, i97, i99, i97) → 701_0_mod_LE(EOS(STATIC_701), i97, i99, i97, i99, i97, i99)
701_0_mod_LE(EOS(STATIC_701), i97, i99, i97, i99, i97, i99) → 704_0_mod_Load(EOS(STATIC_704), i97, i99, i97, i99, i97) | >(i99, 0)
704_0_mod_Load(EOS(STATIC_704), i97, i99, i97, i99, i97) → 739_0_mod_Load(EOS(STATIC_739), i97, i99, i97, i99, i97)
739_0_mod_Load(EOS(STATIC_739), i97, i99, i97, i105, i97) → 742_0_mod_Load(EOS(STATIC_742), i97, i99, i97, i105, i97, i105)
742_0_mod_Load(EOS(STATIC_742), i97, i99, i97, i105, i97, i105) → 744_0_mod_LT(EOS(STATIC_744), i97, i99, i97, i105, i97, i105, i97)
744_0_mod_LT(EOS(STATIC_744), i97, i99, i97, i105, i97, i105, i97) → 746_0_mod_LT(EOS(STATIC_746), i97, i99, i97, i105, i97, i105, i97)
744_0_mod_LT(EOS(STATIC_744), i97, i99, i97, i105, i97, i105, i97) → 747_0_mod_LT(EOS(STATIC_747), i97, i99, i97, i105, i97, i105, i97)
746_0_mod_LT(EOS(STATIC_746), i97, i99, i97, i105, i97, i105, i97) → 749_0_mod_Load(EOS(STATIC_749), i97, i99, i97, i105, i97) | <(i105, i97)
749_0_mod_Load(EOS(STATIC_749), i97, i99, i97, i105, i97) → 753_0_mod_Return(EOS(STATIC_753), i97, i99, i97, i105, i97, i105)
753_0_mod_Return(EOS(STATIC_753), i97, i99, i97, i105, i97, i105) → 756_0_gcd_Store(EOS(STATIC_756), i97, i105)
756_0_gcd_Store(EOS(STATIC_756), i97, i105) → 760_0_gcd_Load(EOS(STATIC_760), i105, i97)
760_0_gcd_Load(EOS(STATIC_760), i105, i97) → 764_0_gcd_Store(EOS(STATIC_764), i105, i97)
764_0_gcd_Store(EOS(STATIC_764), i105, i97) → 768_0_gcd_JMP(EOS(STATIC_768), i97, i105)
768_0_gcd_JMP(EOS(STATIC_768), i97, i105) → 775_0_gcd_Load(EOS(STATIC_775), i97, i105)
775_0_gcd_Load(EOS(STATIC_775), i97, i105) → 530_0_gcd_Load(EOS(STATIC_530), i97, i105)
530_0_gcd_Load(EOS(STATIC_530), i66, i67) → 647_0_gcd_LE(EOS(STATIC_647), i66, i67, i67)
747_0_mod_LT(EOS(STATIC_747), i97, i99, i97, i105, i97, i105, i97) → 751_0_mod_Load(EOS(STATIC_751), i97, i99, i97, i105, i97) | >=(i105, i97)
751_0_mod_Load(EOS(STATIC_751), i97, i99, i97, i105, i97) → 754_0_mod_Load(EOS(STATIC_754), i97, i99, i97, i97, i105)
754_0_mod_Load(EOS(STATIC_754), i97, i99, i97, i97, i105) → 758_0_mod_IntArithmetic(EOS(STATIC_758), i97, i99, i97, i97, i105, i97)
758_0_mod_IntArithmetic(EOS(STATIC_758), i97, i99, i97, i97, i105, i97) → 762_0_mod_Store(EOS(STATIC_762), i97, i99, i97, i97, -(i105, i97)) | >(i97, 0)
762_0_mod_Store(EOS(STATIC_762), i97, i99, i97, i97, i107) → 766_0_mod_JMP(EOS(STATIC_766), i97, i99, i97, i107, i97)
766_0_mod_JMP(EOS(STATIC_766), i97, i99, i97, i107, i97) → 771_0_mod_Load(EOS(STATIC_771), i97, i99, i97, i107, i97)
771_0_mod_Load(EOS(STATIC_771), i97, i99, i97, i107, i97) → 739_0_mod_Load(EOS(STATIC_739), i97, i99, i97, i107, i97)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
744_0_mod_LT(EOS(STATIC_744), x0, x1, x0, x2, x0, x2, x0) → 744_0_mod_LT(EOS(STATIC_744), x2, x0, x2, x0, x2, x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
744_0_mod_LT(EOS(STATIC_744), x0, x1, x0, x2, x0, x2, x0) → 744_0_mod_LT(EOS(STATIC_744), x0, x1, x0, -(x2, x0), x0, -(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:

Filtered ground terms:



744_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → 744_0_mod_LT(x2, x3, x4, x5, x6, x7, x8)
EOS(x1) → EOS
Cond_744_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_744_0_mod_LT1(x1, x3, x4, x5, x6, x7, x8, x9)
Cond_744_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_744_0_mod_LT(x1, x3, x4, x5, x6, x7, x8, x9)

Filtered duplicate args:



744_0_mod_LT(x1, x2, x3, x4, x5, x6, x7) → 744_0_mod_LT(x2, x6, x7)
Cond_744_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_744_0_mod_LT(x1, x3, x7, x8)
Cond_744_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_744_0_mod_LT1(x1, x3, x7, x8)

Filtered unneeded arguments:



Cond_744_0_mod_LT(x1, x2, x3, x4) → Cond_744_0_mod_LT(x1, x3, x4)
Cond_744_0_mod_LT1(x1, x2, x3, x4) → Cond_744_0_mod_LT1(x1, x3, x4)
744_0_mod_LT(x1, x2, x3) → 744_0_mod_LT(x2, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
744_0_mod_LT(x2, x0) → 744_0_mod_LT(x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
744_0_mod_LT(x2, x0) → 744_0_mod_LT(-(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0)
COND_744_0_MOD_LT(TRUE, x2, x0) → 744_0_MOD_LT(x0, x2)
744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0)
COND_744_0_MOD_LT1(TRUE, x2, x0) → 744_0_MOD_LT(-(x2, x0), x0)
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])
(1): COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1])
(2): 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(x2[2] >= x0[2] && x0[2] > 0, x2[2], x0[2])
(3): COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(x2[3] - x0[3], x0[3])

(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0x2[0]* x2[1]x0[0]* x0[1])


(1) -> (0), if (x0[1]* x2[0]x2[1]* x0[0])


(1) -> (2), if (x0[1]* x2[2]x2[1]* x0[2])


(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0x2[2]* x2[3]x0[2]* x0[3])


(3) -> (0), if (x2[3] - x0[3]* x2[0]x0[3]* x0[0])


(3) -> (2), if (x2[3] - x0[3]* x2[2]x0[3]* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@2ac2e1b1 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0) the following chains were created:
  • We consider the chain 744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]), COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1]) which results in the following constraint:

    (1)    (&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUEx2[0]=x2[1]x0[0]=x0[1]744_0_MOD_LT(x2[0], x0[0])≥NonInfC∧744_0_MOD_LT(x2[0], x0[0])≥COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE>(x2[0], 0)=TRUE<(x2[0], x0[0])=TRUE744_0_MOD_LT(x2[0], x0[0])≥NonInfC∧744_0_MOD_LT(x2[0], x0[0])≥COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[-1 + (-1)bso_19] + x0[0] + [-1]x2[0] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[-1 + (-1)bso_19] + x0[0] + [-1]x2[0] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[-1 + (-1)bso_19] + x0[0] + [-1]x2[0] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] + [-1]x2[0] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)







For Pair COND_744_0_MOD_LT(TRUE, x2, x0) → 744_0_MOD_LT(x0, x2) the following chains were created:
  • We consider the chain COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1]), 744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) which results in the following constraint:

    (9)    (x0[1]=x2[0]x2[1]=x0[0]COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥744_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (9) using rule (IV) which results in the following new constraint:

    (10)    (COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥744_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_21] ≥ 0)



  • We consider the chain COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1]), 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) which results in the following constraint:

    (15)    (x0[1]=x2[2]x2[1]=x0[2]COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥744_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (15) using rule (IV) which results in the following new constraint:

    (16)    (COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_744_0_MOD_LT(TRUE, x2[1], x0[1])≥744_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (19) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (20)    ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_21] ≥ 0)







For Pair 744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0) the following chains were created:
  • We consider the chain 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]) which results in the following constraint:

    (21)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]744_0_MOD_LT(x2[2], x0[2])≥NonInfC∧744_0_MOD_LT(x2[2], x0[2])≥COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (21) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (22)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUE744_0_MOD_LT(x2[2], x0[2])≥NonInfC∧744_0_MOD_LT(x2[2], x0[2])≥COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)







For Pair COND_744_0_MOD_LT1(TRUE, x2, x0) → 744_0_MOD_LT(-(x2, x0), x0) the following chains were created:
  • We consider the chain 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]), 744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) which results in the following constraint:

    (28)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]-(x2[3], x0[3])=x2[0]x0[3]=x0[0]COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥744_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (28) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (29)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUECOND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥744_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



  • We consider the chain 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]), 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) which results in the following constraint:

    (35)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]-(x2[3], x0[3])=x2[2]1x0[3]=x0[2]1COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥744_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (35) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (36)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUECOND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥744_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (36) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (37)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (38)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (38) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (39)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0)
    • ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(3)bni_18 + (-1)Bound*bni_18] + [bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)

  • COND_744_0_MOD_LT(TRUE, x2, x0) → 744_0_MOD_LT(x0, x2)
    • ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_21] ≥ 0)
    • ((UIncreasing(744_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_21] ≥ 0)

  • 744_0_MOD_LT(x2, x0) → COND_744_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)

  • COND_744_0_MOD_LT1(TRUE, x2, x0) → 744_0_MOD_LT(-(x2, x0), x0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(744_0_MOD_LT(x1, x2)) = [1] + x2   
POL(COND_744_0_MOD_LT(x1, x2, x3)) = [2] + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(COND_744_0_MOD_LT1(x1, x2, x3)) = [1] + x3   
POL(>=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   

The following pairs are in P>:

COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1])

The following pairs are in Pbound:

744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3])

The following pairs are in P:

744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 744_0_MOD_LT(x2[0], x0[0]) → COND_744_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])
(2): 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(x2[2] >= x0[2] && x0[2] > 0, x2[2], x0[2])
(3): COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(x2[3] - x0[3], x0[3])

(3) -> (0), if (x2[3] - x0[3]* x2[0]x0[3]* x0[0])


(3) -> (2), if (x2[3] - x0[3]* x2[2]x0[3]* x0[2])


(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0x2[2]* x2[3]x0[2]* x0[3])



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(x2[3] - x0[3], x0[3])
(2): 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(x2[2] >= x0[2] && x0[2] > 0, x2[2], x0[2])

(3) -> (2), if (x2[3] - x0[3]* x2[2]x0[3]* x0[2])


(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0x2[2]* x2[3]x0[2]* x0[3])



The set Q is empty.

(12) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@2ac2e1b1 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]) the following chains were created:
  • We consider the chain 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]), 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) which results in the following constraint:

    (1)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]-(x2[3], x0[3])=x2[2]1x0[3]=x0[2]1COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[3], x0[3])≥744_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUECOND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_744_0_MOD_LT1(TRUE, x2[2], x0[2])≥744_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[2] + [bni_13]x2[2] ≥ 0∧[(-1)bso_14] + x0[2] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[2] + [bni_13]x2[2] ≥ 0∧[(-1)bso_14] + x0[2] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[2] + [bni_13]x2[2] ≥ 0∧[(-1)bso_14] + x0[2] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[2] ≥ 0∧[(-1)bso_14] + x0[2] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[2] ≥ 0∧[1 + (-1)bso_14] + x0[2] ≥ 0)







For Pair 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) the following chains were created:
  • We consider the chain 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3]) which results in the following constraint:

    (8)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]744_0_MOD_LT(x2[2], x0[2])≥NonInfC∧744_0_MOD_LT(x2[2], x0[2])≥COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (8) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUE744_0_MOD_LT(x2[2], x0[2])≥NonInfC∧744_0_MOD_LT(x2[2], x0[2])≥COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3])
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(744_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[2] ≥ 0∧[1 + (-1)bso_14] + x0[2] ≥ 0)

  • 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x2[2] ≥ 0∧[(-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_744_0_MOD_LT1(x1, x2, x3)) = [-1] + [-1]x3 + x2 + [-1]x1   
POL(744_0_MOD_LT(x1, x2)) = [-1] + [-1]x2 + x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(&&(x1, x2)) = 0   
POL(>=(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   

The following pairs are in P>:

COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3])

The following pairs are in Pbound:

COND_744_0_MOD_LT1(TRUE, x2[3], x0[3]) → 744_0_MOD_LT(-(x2[3], x0[3]), x0[3])
744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])

The following pairs are in P:

744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 744_0_MOD_LT(x2[2], x0[2]) → COND_744_0_MOD_LT1(x2[2] >= x0[2] && x0[2] > 0, x2[2], x0[2])


The set Q is empty.

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_744_0_MOD_LT(TRUE, x2[1], x0[1]) → 744_0_MOD_LT(x0[1], x2[1])


The set Q is empty.

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE