0 JBC
↳1 JBCToGraph (⇒, 320 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 90 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 210 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
public class DivMinus {
public static int div(int x, int y) {
int res = 0;
while (x >= y && y > 0) {
x = x-y;
res = res + 1;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
div(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 17 rules for P and 0 rules for R.
P rules:
701_0_div_Load(EOS(STATIC_701), i98, i97, i98, i97) → 703_0_div_LT(EOS(STATIC_703), i98, i97, i98, i97, i98)
703_0_div_LT(EOS(STATIC_703), i98, i97, i98, i97, i98) → 707_0_div_LT(EOS(STATIC_707), i98, i97, i98, i97, i98)
707_0_div_LT(EOS(STATIC_707), i98, i97, i98, i97, i98) → 711_0_div_Load(EOS(STATIC_711), i98, i97, i98) | >=(i97, i98)
711_0_div_Load(EOS(STATIC_711), i98, i97, i98) → 716_0_div_LE(EOS(STATIC_716), i98, i97, i98, i98)
716_0_div_LE(EOS(STATIC_716), i108, i97, i108, i108) → 721_0_div_LE(EOS(STATIC_721), i108, i97, i108, i108)
721_0_div_LE(EOS(STATIC_721), i108, i97, i108, i108) → 728_0_div_Load(EOS(STATIC_728), i108, i97, i108) | >(i108, 0)
728_0_div_Load(EOS(STATIC_728), i108, i97, i108) → 736_0_div_Load(EOS(STATIC_736), i108, i108, i97)
736_0_div_Load(EOS(STATIC_736), i108, i108, i97) → 743_0_div_IntArithmetic(EOS(STATIC_743), i108, i108, i97, i108)
743_0_div_IntArithmetic(EOS(STATIC_743), i108, i108, i97, i108) → 747_0_div_Store(EOS(STATIC_747), i108, i108, -(i97, i108)) | >(i108, 0)
747_0_div_Store(EOS(STATIC_747), i108, i108, i109) → 750_0_div_Load(EOS(STATIC_750), i108, i109, i108)
750_0_div_Load(EOS(STATIC_750), i108, i109, i108) → 753_0_div_ConstantStackPush(EOS(STATIC_753), i108, i109, i108)
753_0_div_ConstantStackPush(EOS(STATIC_753), i108, i109, i108) → 755_0_div_IntArithmetic(EOS(STATIC_755), i108, i109, i108)
755_0_div_IntArithmetic(EOS(STATIC_755), i108, i109, i108) → 757_0_div_Store(EOS(STATIC_757), i108, i109, i108)
757_0_div_Store(EOS(STATIC_757), i108, i109, i108) → 759_0_div_JMP(EOS(STATIC_759), i108, i109, i108)
759_0_div_JMP(EOS(STATIC_759), i108, i109, i108) → 778_0_div_Load(EOS(STATIC_778), i108, i109, i108)
778_0_div_Load(EOS(STATIC_778), i108, i109, i108) → 697_0_div_Load(EOS(STATIC_697), i108, i109, i108)
697_0_div_Load(EOS(STATIC_697), i98, i97, i98) → 701_0_div_Load(EOS(STATIC_701), i98, i97, i98, i97)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
701_0_div_Load(EOS(STATIC_701), x0, x1, x0, x1) → 701_0_div_Load(EOS(STATIC_701), x0, -(x1, x0), x0, -(x1, x0)) | &&(>=(x1, x0), >(x0, 0))
R rules:
Filtered ground terms:
701_0_div_Load(x1, x2, x3, x4, x5) → 701_0_div_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_701_0_div_Load(x1, x2, x3, x4, x5, x6) → Cond_701_0_div_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
701_0_div_Load(x1, x2, x3, x4) → 701_0_div_Load(x3, x4)
Cond_701_0_div_Load(x1, x2, x3, x4, x5) → Cond_701_0_div_Load(x1, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
701_0_div_Load(x0, x1) → 701_0_div_Load(x0, -(x1, x0)) | &&(>=(x1, x0), >(x0, 0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
701_0_DIV_LOAD(x0, x1) → COND_701_0_DIV_LOAD(&&(>=(x1, x0), >(x0, 0)), x0, x1)
COND_701_0_DIV_LOAD(TRUE, x0, x1) → 701_0_DIV_LOAD(x0, -(x1, x0))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x0[0] > 0 ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (0), if (x0[1] →* x0[0]∧x1[1] - x0[1] →* x1[0])
(1) (&&(>=(x1[0], x0[0]), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 701_0_DIV_LOAD(x0[0], x1[0])≥NonInfC∧701_0_DIV_LOAD(x0[0], x1[0])≥COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥))
(2) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ 701_0_DIV_LOAD(x0[0], x1[0])≥NonInfC∧701_0_DIV_LOAD(x0[0], x1[0])≥COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] + [(-1)bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (&&(>=(x1[0], x0[0]), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x0[1]=x0[0]1∧-(x1[1], x0[1])=x1[0]1 ⇒ COND_701_0_DIV_LOAD(TRUE, x0[1], x1[1])≥NonInfC∧COND_701_0_DIV_LOAD(TRUE, x0[1], x1[1])≥701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))∧(UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥))
(9) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_701_0_DIV_LOAD(TRUE, x0[0], x1[0])≥NonInfC∧COND_701_0_DIV_LOAD(TRUE, x0[0], x1[0])≥701_0_DIV_LOAD(x0[0], -(x1[0], x0[0]))∧(UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥))
(10) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[(-1)bso_16] + x0[0] ≥ 0)
(11) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[(-1)bso_16] + x0[0] ≥ 0)
(12) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] + [(-1)bni_15]x0[0] ≥ 0∧[(-1)bso_16] + x0[0] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x1[0] ≥ 0∧[(-1)bso_16] + x0[0] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))), ≥)∧[(-1)Bound*bni_15 + (-1)bni_15] + [bni_15]x1[0] ≥ 0∧[1 + (-1)bso_16] + x0[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(701_0_DIV_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_701_0_DIV_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
COND_701_0_DIV_LOAD(TRUE, x0[1], x1[1]) → 701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))
701_0_DIV_LOAD(x0[0], x1[0]) → COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])
COND_701_0_DIV_LOAD(TRUE, x0[1], x1[1]) → 701_0_DIV_LOAD(x0[1], -(x1[1], x0[1]))
701_0_DIV_LOAD(x0[0], x1[0]) → COND_701_0_DIV_LOAD(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer