0 JBC
↳1 JBCToGraph (⇒, 100 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 20 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 120 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
package ClassAnalysis;
public class ClassAnalysis {
A field;
public static void main(String[] args) {
Random.args = args;
ClassAnalysis t = new ClassAnalysis();
t.field = new A();
t.field = new B();
t.eval();
}
public void eval() {
int x = Random.random() % 100;
this.field.test(x);
}
}
class A {
public boolean test(int x) {
while (x > 0) {
if (x > 10) {
x--;
} else {
x++;
}
}
return true;
}
}
class B extends A {
public boolean test(int x) {
while (x > 0) {
x--;
}
return true;
}
}
package ClassAnalysis;
public class Random {
static String[] args;
static int index = 0;
public static int random() {
final String string = args[index];
index++;
return string.length();
}
}
Generated 6 rules for P and 0 rules for R.
P rules:
335_0_test_LE(EOS(STATIC_335), i44, i44) → 352_0_test_LE(EOS(STATIC_352), i44, i44)
352_0_test_LE(EOS(STATIC_352), i44, i44) → 360_0_test_Inc(EOS(STATIC_360), i44) | >(i44, 0)
360_0_test_Inc(EOS(STATIC_360), i44) → 369_0_test_JMP(EOS(STATIC_369), +(i44, -1)) | >(i44, 0)
369_0_test_JMP(EOS(STATIC_369), i47) → 381_0_test_Load(EOS(STATIC_381), i47)
381_0_test_Load(EOS(STATIC_381), i47) → 322_0_test_Load(EOS(STATIC_322), i47)
322_0_test_Load(EOS(STATIC_322), i30) → 335_0_test_LE(EOS(STATIC_335), i30, i30)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
335_0_test_LE(EOS(STATIC_335), x0, x0) → 335_0_test_LE(EOS(STATIC_335), +(x0, -1), +(x0, -1)) | >(x0, 0)
R rules:
Filtered ground terms:
335_0_test_LE(x1, x2, x3) → 335_0_test_LE(x2, x3)
EOS(x1) → EOS
Cond_335_0_test_LE(x1, x2, x3, x4) → Cond_335_0_test_LE(x1, x3, x4)
Filtered duplicate args:
335_0_test_LE(x1, x2) → 335_0_test_LE(x2)
Cond_335_0_test_LE(x1, x2, x3) → Cond_335_0_test_LE(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
335_0_test_LE(x0) → 335_0_test_LE(+(x0, -1)) | >(x0, 0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
335_0_TEST_LE(x0) → COND_335_0_TEST_LE(>(x0, 0), x0)
COND_335_0_TEST_LE(TRUE, x0) → 335_0_TEST_LE(+(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] + -1 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 335_0_TEST_LE(x0[0])≥NonInfC∧335_0_TEST_LE(x0[0])≥COND_335_0_TEST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 335_0_TEST_LE(x0[0])≥NonInfC∧335_0_TEST_LE(x0[0])≥COND_335_0_TEST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_335_0_TEST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(7) (COND_335_0_TEST_LE(TRUE, x0[1])≥NonInfC∧COND_335_0_TEST_LE(TRUE, x0[1])≥335_0_TEST_LE(+(x0[1], -1))∧(UIncreasing(335_0_TEST_LE(+(x0[1], -1))), ≥))
(8) ((UIncreasing(335_0_TEST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(9) ((UIncreasing(335_0_TEST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(10) ((UIncreasing(335_0_TEST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(335_0_TEST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(335_0_TEST_LE(x1)) = [2]x1
POL(COND_335_0_TEST_LE(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_335_0_TEST_LE(TRUE, x0[1]) → 335_0_TEST_LE(+(x0[1], -1))
335_0_TEST_LE(x0[0]) → COND_335_0_TEST_LE(>(x0[0], 0), x0[0])
335_0_TEST_LE(x0[0]) → COND_335_0_TEST_LE(>(x0[0], 0), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer