(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_26 (Sun Microsystems Inc.) Main-Class: ListReverseAcyclicList
public class ListReverseAcyclicList {
public static void main(String... args) {
List x = List.createList(args[0].length(), null);
List.reverse(x);
}
}

class List {
List n;

public List(List next) {
this.n = next;
}

public static void reverse(List x) {
List y = null;
while (x != null) {
List z = x;
x = x.n;
z.n = y;
y = z;
}
}

public static List createList(int l, List end) {
while (--l > 0) {
end = new List(end);
}
return end;
}

public static List createCycle(int l) {
List last = new List(null);
List first = createList(l - 1, last);
last.n = first;
return first;
}

public static List createPanhandleList(int pl, int cl) {
return createList(pl, createCycle(cl));
}

}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
ListReverseAcyclicList.main([Ljava/lang/String;)V: Graph of 142 nodes with 2 SCCs.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 2 SCCss.

(4) Complex Obligation (AND)

(5) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: ListReverseAcyclicList.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(6) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 28 rules for P and 0 rules for R.


P rules:
819_0_reverse_NULL(EOS(STATIC_819), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub)) → 820_0_reverse_NULL(EOS(STATIC_820), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub))
820_0_reverse_NULL(EOS(STATIC_820), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub)) → 823_0_reverse_Load(EOS(STATIC_823), o181, java.lang.Object(o261sub), o180)
823_0_reverse_Load(EOS(STATIC_823), o181, java.lang.Object(o261sub), o180) → 826_0_reverse_Store(EOS(STATIC_826), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub))
826_0_reverse_Store(EOS(STATIC_826), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub)) → 829_0_reverse_Load(EOS(STATIC_829), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub))
829_0_reverse_Load(EOS(STATIC_829), o181, java.lang.Object(o261sub), o180, java.lang.Object(o261sub)) → 833_0_reverse_FieldAccess(EOS(STATIC_833), o181, o180, java.lang.Object(o261sub), java.lang.Object(o261sub))
833_0_reverse_FieldAccess(EOS(STATIC_833), o181, o180, java.lang.Object(o261sub), java.lang.Object(o261sub)) → 835_0_reverse_FieldAccess(EOS(STATIC_835), o181, o180, java.lang.Object(o261sub), java.lang.Object(o261sub))
833_0_reverse_FieldAccess(EOS(STATIC_833), java.lang.Object(o261sub), o180, java.lang.Object(o261sub), java.lang.Object(o261sub)) → 836_0_reverse_FieldAccess(EOS(STATIC_836), java.lang.Object(o261sub), o180, java.lang.Object(o261sub), java.lang.Object(o261sub))
835_0_reverse_FieldAccess(EOS(STATIC_835), o181, o180, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263))) → 837_0_reverse_FieldAccess(EOS(STATIC_837), o181, o180, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263)))
837_0_reverse_FieldAccess(EOS(STATIC_837), o181, o180, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263))) → 840_0_reverse_Store(EOS(STATIC_840), o181, o180, java.lang.Object(List(EOC, o263)), o263)
840_0_reverse_Store(EOS(STATIC_840), o181, o180, java.lang.Object(List(EOC, o263)), o263) → 844_0_reverse_Load(EOS(STATIC_844), o181, o263, o180, java.lang.Object(List(EOC, o263)))
844_0_reverse_Load(EOS(STATIC_844), o181, o263, o180, java.lang.Object(List(EOC, o263))) → 847_0_reverse_Load(EOS(STATIC_847), o181, o263, o180, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263)))
847_0_reverse_Load(EOS(STATIC_847), o181, o263, o180, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263))) → 850_0_reverse_FieldAccess(EOS(STATIC_850), o181, o263, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263)), o180)
850_0_reverse_FieldAccess(EOS(STATIC_850), o181, o263, java.lang.Object(List(EOC, o263)), java.lang.Object(List(EOC, o263)), o180) → 855_0_reverse_Load(EOS(STATIC_855), o181, o263, java.lang.Object(List(EOC, o180)))
855_0_reverse_Load(EOS(STATIC_855), o181, o263, java.lang.Object(List(EOC, o180))) → 859_0_reverse_Store(EOS(STATIC_859), o181, o263, java.lang.Object(List(EOC, o180)))
859_0_reverse_Store(EOS(STATIC_859), o181, o263, java.lang.Object(List(EOC, o180))) → 863_0_reverse_JMP(EOS(STATIC_863), o181, o263, java.lang.Object(List(EOC, o180)))
863_0_reverse_JMP(EOS(STATIC_863), o181, o263, java.lang.Object(List(EOC, o180))) → 869_0_reverse_Load(EOS(STATIC_869), o181, o263, java.lang.Object(List(EOC, o180)))
869_0_reverse_Load(EOS(STATIC_869), o181, o263, java.lang.Object(List(EOC, o180))) → 753_0_reverse_Load(EOS(STATIC_753), o181, o263, java.lang.Object(List(EOC, o180)))
753_0_reverse_Load(EOS(STATIC_753), o181, o179, o180) → 819_0_reverse_NULL(EOS(STATIC_819), o181, o179, o180, o179)
836_0_reverse_FieldAccess(EOS(STATIC_836), java.lang.Object(List(EOC, o265)), o180, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265))) → 839_0_reverse_FieldAccess(EOS(STATIC_839), java.lang.Object(List(EOC, o265)), o180, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265)))
839_0_reverse_FieldAccess(EOS(STATIC_839), java.lang.Object(List(EOC, o265)), o180, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265))) → 842_0_reverse_Store(EOS(STATIC_842), java.lang.Object(List(EOC, o265)), o180, java.lang.Object(List(EOC, o265)), o265)
842_0_reverse_Store(EOS(STATIC_842), java.lang.Object(List(EOC, o265)), o180, java.lang.Object(List(EOC, o265)), o265) → 845_0_reverse_Load(EOS(STATIC_845), java.lang.Object(List(EOC, o265)), o265, o180, java.lang.Object(List(EOC, o265)))
845_0_reverse_Load(EOS(STATIC_845), java.lang.Object(List(EOC, o265)), o265, o180, java.lang.Object(List(EOC, o265))) → 849_0_reverse_Load(EOS(STATIC_849), java.lang.Object(List(EOC, o265)), o265, o180, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265)))
849_0_reverse_Load(EOS(STATIC_849), java.lang.Object(List(EOC, o265)), o265, o180, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265))) → 852_0_reverse_FieldAccess(EOS(STATIC_852), java.lang.Object(List(EOC, o265)), o265, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265)), o180)
852_0_reverse_FieldAccess(EOS(STATIC_852), java.lang.Object(List(EOC, o265)), o265, java.lang.Object(List(EOC, o265)), java.lang.Object(List(EOC, o265)), o180) → 858_0_reverse_Load(EOS(STATIC_858), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180)))
858_0_reverse_Load(EOS(STATIC_858), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180))) → 862_0_reverse_Store(EOS(STATIC_862), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180)))
862_0_reverse_Store(EOS(STATIC_862), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180))) → 865_0_reverse_JMP(EOS(STATIC_865), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180)))
865_0_reverse_JMP(EOS(STATIC_865), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180))) → 872_0_reverse_Load(EOS(STATIC_872), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180)))
872_0_reverse_Load(EOS(STATIC_872), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180))) → 753_0_reverse_Load(EOS(STATIC_753), java.lang.Object(List(EOC, o180)), o265, java.lang.Object(List(EOC, o180)))
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
819_0_reverse_NULL(EOS(STATIC_819), x0, java.lang.Object(List(EOC, x1)), x2, java.lang.Object(List(EOC, x1))) → 819_0_reverse_NULL(EOS(STATIC_819), x0, x1, java.lang.Object(List(EOC, x2)), x1)
819_0_reverse_NULL(EOS(STATIC_819), java.lang.Object(List(EOC, x0)), java.lang.Object(List(EOC, x0)), x1, java.lang.Object(List(EOC, x0))) → 819_0_reverse_NULL(EOS(STATIC_819), java.lang.Object(List(EOC, x1)), x0, java.lang.Object(List(EOC, x1)), x0)
R rules:

Filtered ground terms:



819_0_reverse_NULL(x1, x2, x3, x4, x5) → 819_0_reverse_NULL(x2, x3, x4, x5)
List(x1, x2) → List(x2)
EOS(x1) → EOS

Filtered duplicate args:



819_0_reverse_NULL(x1, x2, x3, x4) → 819_0_reverse_NULL(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
819_0_reverse_NULL(x0, x2, java.lang.Object(List(x1))) → 819_0_reverse_NULL(x0, java.lang.Object(List(x2)), x1)
819_0_reverse_NULL(java.lang.Object(List(x0)), x1, java.lang.Object(List(x0))) → 819_0_reverse_NULL(java.lang.Object(List(x1)), java.lang.Object(List(x1)), x0)
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has no predefined symbols.


P rules:
819_0_REVERSE_NULL(x0, x2, java.lang.Object(List(x1))) → 819_0_REVERSE_NULL(x0, java.lang.Object(List(x2)), x1)
819_0_REVERSE_NULL(java.lang.Object(List(x0)), x1, java.lang.Object(List(x0))) → 819_0_REVERSE_NULL(java.lang.Object(List(x1)), java.lang.Object(List(x1)), x0)
R rules:

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(0): 819_0_REVERSE_NULL(x0[0], x2[0], java.lang.Object(List(x1[0]))) → 819_0_REVERSE_NULL(x0[0], java.lang.Object(List(x2[0])), x1[0])
(1): 819_0_REVERSE_NULL(java.lang.Object(List(x0[1])), x1[1], java.lang.Object(List(x0[1]))) → 819_0_REVERSE_NULL(java.lang.Object(List(x1[1])), java.lang.Object(List(x1[1])), x0[1])

(0) -> (0), if (x0[0]* x0[0]'java.lang.Object(List(x2[0])) →* x2[0]'x1[0]* java.lang.Object(List(x1[0]')))


(0) -> (1), if (x0[0]* java.lang.Object(List(x0[1]))∧java.lang.Object(List(x2[0])) →* x1[1]x1[0]* java.lang.Object(List(x0[1])))


(1) -> (0), if (java.lang.Object(List(x1[1])) →* x0[0]java.lang.Object(List(x1[1])) →* x2[0]x0[1]* java.lang.Object(List(x1[0])))


(1) -> (1), if (java.lang.Object(List(x1[1])) →* java.lang.Object(List(x0[1]'))∧java.lang.Object(List(x1[1])) →* x1[1]'x0[1]* java.lang.Object(List(x0[1]')))



The set Q is empty.

(8) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

819_0_REVERSE_NULL(x0[0], x2[0], java.lang.Object(List(x1[0]))) → 819_0_REVERSE_NULL(x0[0], java.lang.Object(List(x2[0])), x1[0])
819_0_REVERSE_NULL(java.lang.Object(List(x0[1])), x1[1], java.lang.Object(List(x0[1]))) → 819_0_REVERSE_NULL(java.lang.Object(List(x1[1])), java.lang.Object(List(x1[1])), x0[1])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 819_0_REVERSE_NULL(x0[0], x2[0], java.lang.Object(List(x1[0]))) → 819_0_REVERSE_NULL(x0[0], java.lang.Object(List(x2[0])), x1[0])
    The graph contains the following edges 1 >= 1, 3 > 3

  • 819_0_REVERSE_NULL(java.lang.Object(List(x0[1])), x1[1], java.lang.Object(List(x0[1]))) → 819_0_REVERSE_NULL(java.lang.Object(List(x1[1])), java.lang.Object(List(x1[1])), x0[1])
    The graph contains the following edges 1 > 3, 3 > 3

(11) YES

(12) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: ListReverseAcyclicList.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(13) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 17 rules for P and 0 rules for R.


P rules:
274_0_createList_Load(EOS(STATIC_274), i35) → 276_0_createList_LE(EOS(STATIC_276), i35, i35)
276_0_createList_LE(EOS(STATIC_276), i39, i39) → 280_0_createList_LE(EOS(STATIC_280), i39, i39)
280_0_createList_LE(EOS(STATIC_280), i39, i39) → 285_0_createList_New(EOS(STATIC_285), i39) | >(i39, 0)
285_0_createList_New(EOS(STATIC_285), i39) → 289_0_createList_Duplicate(EOS(STATIC_289), i39)
289_0_createList_Duplicate(EOS(STATIC_289), i39) → 293_0_createList_Load(EOS(STATIC_293), i39)
293_0_createList_Load(EOS(STATIC_293), i39) → 297_0_createList_InvokeMethod(EOS(STATIC_297), i39)
297_0_createList_InvokeMethod(EOS(STATIC_297), i39) → 301_0_<init>_Load(EOS(STATIC_301), i39)
301_0_<init>_Load(EOS(STATIC_301), i39) → 305_0_<init>_InvokeMethod(EOS(STATIC_305), i39)
305_0_<init>_InvokeMethod(EOS(STATIC_305), i39) → 308_0_<init>_Load(EOS(STATIC_308), i39)
308_0_<init>_Load(EOS(STATIC_308), i39) → 311_0_<init>_Load(EOS(STATIC_311), i39)
311_0_<init>_Load(EOS(STATIC_311), i39) → 316_0_<init>_FieldAccess(EOS(STATIC_316), i39)
316_0_<init>_FieldAccess(EOS(STATIC_316), i39) → 323_0_<init>_Return(EOS(STATIC_323), i39)
323_0_<init>_Return(EOS(STATIC_323), i39) → 329_0_createList_Store(EOS(STATIC_329), i39)
329_0_createList_Store(EOS(STATIC_329), i39) → 336_0_createList_JMP(EOS(STATIC_336), i39)
336_0_createList_JMP(EOS(STATIC_336), i39) → 359_0_createList_Inc(EOS(STATIC_359), i39)
359_0_createList_Inc(EOS(STATIC_359), i39) → 269_0_createList_Inc(EOS(STATIC_269), i39)
269_0_createList_Inc(EOS(STATIC_269), i31) → 274_0_createList_Load(EOS(STATIC_274), +(i31, -1)) | >=(i31, 0)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
274_0_createList_Load(EOS(STATIC_274), x0) → 274_0_createList_Load(EOS(STATIC_274), +(x0, -1)) | >(x0, 0)
R rules:

Filtered ground terms:



274_0_createList_Load(x1, x2) → 274_0_createList_Load(x2)
EOS(x1) → EOS
Cond_274_0_createList_Load(x1, x2, x3) → Cond_274_0_createList_Load(x1, x3)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
274_0_createList_Load(x0) → 274_0_createList_Load(+(x0, -1)) | >(x0, 0)
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
274_0_CREATELIST_LOAD(x0) → COND_274_0_CREATELIST_LOAD(>(x0, 0), x0)
COND_274_0_CREATELIST_LOAD(TRUE, x0) → 274_0_CREATELIST_LOAD(+(x0, -1))
R rules:

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 274_0_CREATELIST_LOAD(x0[0]) → COND_274_0_CREATELIST_LOAD(x0[0] > 0, x0[0])
(1): COND_274_0_CREATELIST_LOAD(TRUE, x0[1]) → 274_0_CREATELIST_LOAD(x0[1] + -1)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])


(1) -> (0), if (x0[1] + -1* x0[0])



The set Q is empty.

(15) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@2aec4bcb Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 274_0_CREATELIST_LOAD(x0) → COND_274_0_CREATELIST_LOAD(>(x0, 0), x0) the following chains were created:
  • We consider the chain 274_0_CREATELIST_LOAD(x0[0]) → COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0]), COND_274_0_CREATELIST_LOAD(TRUE, x0[1]) → 274_0_CREATELIST_LOAD(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]274_0_CREATELIST_LOAD(x0[0])≥NonInfC∧274_0_CREATELIST_LOAD(x0[0])≥COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])∧(UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE274_0_CREATELIST_LOAD(x0[0])≥NonInfC∧274_0_CREATELIST_LOAD(x0[0])≥COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])∧(UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)







For Pair COND_274_0_CREATELIST_LOAD(TRUE, x0) → 274_0_CREATELIST_LOAD(+(x0, -1)) the following chains were created:
  • We consider the chain COND_274_0_CREATELIST_LOAD(TRUE, x0[1]) → 274_0_CREATELIST_LOAD(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_274_0_CREATELIST_LOAD(TRUE, x0[1])≥NonInfC∧COND_274_0_CREATELIST_LOAD(TRUE, x0[1])≥274_0_CREATELIST_LOAD(+(x0[1], -1))∧(UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 274_0_CREATELIST_LOAD(x0) → COND_274_0_CREATELIST_LOAD(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)

  • COND_274_0_CREATELIST_LOAD(TRUE, x0) → 274_0_CREATELIST_LOAD(+(x0, -1))
    • ((UIncreasing(274_0_CREATELIST_LOAD(+(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(274_0_CREATELIST_LOAD(x1)) = [2]x1   
POL(COND_274_0_CREATELIST_LOAD(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_274_0_CREATELIST_LOAD(TRUE, x0[1]) → 274_0_CREATELIST_LOAD(+(x0[1], -1))

The following pairs are in Pbound:

274_0_CREATELIST_LOAD(x0[0]) → COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])

The following pairs are in P:

274_0_CREATELIST_LOAD(x0[0]) → COND_274_0_CREATELIST_LOAD(>(x0[0], 0), x0[0])

There are no usable rules.

(16) Complex Obligation (AND)

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 274_0_CREATELIST_LOAD(x0[0]) → COND_274_0_CREATELIST_LOAD(x0[0] > 0, x0[0])


The set Q is empty.

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_274_0_CREATELIST_LOAD(TRUE, x0[1]) → 274_0_CREATELIST_LOAD(x0[1] + -1)


The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(22) TRUE