R
↳Dependency Pair Analysis
F(f(x)) -> F(g(f(x), x))
F(f(x)) -> G(f(x), x)
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> H(f(x), f(x))
H(x, x) -> G(x, 0)
R
↳DPs
→DP Problem 1
↳Negative Polynomial Order
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> F(g(f(x), x))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> F(g(f(x), x))
h(x, x) -> g(x, 0)
g(x, y) -> y
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
POL( F(x1) ) = x1
POL( f(x1) ) = x1 + 1
POL( h(x1, x2) ) = 0
POL( g(x1, x2) ) = x2
POL( 0 ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Dependency Graph
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)