Term Rewriting System R:
[x, y]
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

G(x, s(y)) -> G(f(x, y), 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

G(f(x, y), 0) -> G(y, 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)


Rules:


g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))





The following dependency pair can be strictly oriented:

G(s(x), y) -> G(f(x, y), 0)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(G(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  
  POL(f(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)


Rules:


g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))





The following dependency pairs can be strictly oriented:

G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(G(x1, x2))=  x1  
  POL(f(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:


Rules:


g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes