R
↳Dependency Pair Analysis
G(x, s(y)) -> G(f(x, y), 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
G(f(x, y), 0) -> G(y, 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
G(s(x), y) -> G(f(x, y), 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
POL(0) = 0 POL(g(x1, x2)) = x1 + x2 POL(G(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(f(x1, x2)) = x1 + x2
G(x1, x2) -> G(x1, x2)
s(x1) -> s(x1)
f(x1, x2) -> f(x1, x2)
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
POL(0) = 0 POL(g(x1, x2)) = x1 + x2 POL(G(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(f(x1, x2)) = 1 + x1 + x2
G(x1, x2) -> G(x1, x2)
f(x1, x2) -> f(x1, x2)
g(x1, x2) -> g(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))