R
↳Dependency Pair Analysis
F(s(x), s(y)) -> F(x, y)
G(0, x) -> G(f(x, x), x)
G(0, x) -> F(x, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(s(x), s(y)) -> F(x, y)
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)
F(s(x), s(y)) -> F(x, y)
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2)) = x1 + x2 POL(f(x1, x2)) = 1 + x1 + x2
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)
f(x1, x2) -> f(x1, x2)
g(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
G(0, x) -> G(f(x, x), x)
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)
G(0, x) -> G(f(x, x), x)
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)
POL(0) = 1 POL(g(x1, x2)) = x1 + x2 POL(G(x1, x2)) = x1 + x2 POL(s) = 0 POL(f) = 0
G(x1, x2) -> G(x1, x2)
f(x1, x2) -> f
s(x1) -> s
g(x1, x2) -> g(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(x, 0) -> s(0)
f(s(x), s(y)) -> s(f(x, y))
g(0, x) -> g(f(x, x), x)