R
↳Dependency Pair Analysis
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:'(:(x, y), z) -> :'(z, i(y))
:'(:(x, y), z) -> I(y)
:'(e, x) -> I(x)
:'(x, :(y, i(x))) -> I(y)
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(i(x), :(y, x)) -> I(y)
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(i(x), :(y, :(x, z))) -> I(z)
I(:(x, y)) -> :'(y, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
:'(i(x), :(y, :(x, z))) -> I(z)
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(i(x), :(y, x)) -> I(y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(x, :(y, i(x))) -> I(y)
:'(e, x) -> I(x)
I(:(x, y)) -> :'(y, x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
:'(i(x), :(y, :(x, z))) -> I(z)
:'(i(x), :(y, :(x, z))) -> :'(i(z), y)
:'(i(x), :(y, x)) -> I(y)
:'(x, :(y, :(i(x), z))) -> I(z)
:'(x, :(y, :(i(x), z))) -> :'(i(z), y)
:'(x, :(y, i(x))) -> I(y)
I(:(x, y)) -> :'(y, x)
:'(:(x, y), z) -> I(y)
:'(:(x, y), z) -> :'(z, i(y))
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
POL(:(x1, x2)) = 1 + x1 + x2 POL(I(x1)) = x1 POL(i(x1)) = x1 POL(e) = 0 POL(:'(x1, x2)) = x1 + x2
:'(x1, x2) -> :'(x1, x2)
I(x1) -> I(x1)
:(x1, x2) -> :(x1, x2)
i(x1) -> i(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
:'(e, x) -> I(x)
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Argument Filtering and Ordering
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
:'(:(x, y), z) -> :'(x, :(z, i(y)))
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e
POL(:(x1, x2)) = 1 + x1 + x2 POL(i(x1)) = x1 POL(e) = 0
:'(x1, x2) -> x1
:(x1, x2) -> :(x1, x2)
i(x1) -> i(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
:(x, x) -> e
:(x, e) -> x
:(:(x, y), z) -> :(x, :(z, i(y)))
:(e, x) -> i(x)
:(x, :(y, i(x))) -> i(y)
:(x, :(y, :(i(x), z))) -> :(i(z), y)
:(i(x), :(y, x)) -> i(y)
:(i(x), :(y, :(x, z))) -> :(i(z), y)
i(:(x, y)) -> :(y, x)
i(i(x)) -> x
i(e) -> e