Term Rewriting System R:
[x, y, z]
O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(O(x), O(y)) -> O'(+(x, y))
+'(O(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(I(x), I(y)) -> O'(+(+(x, y), I(0)))
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), I(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
-'(O(x), O(y)) -> O'(-(x, y))
-'(O(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(I(x), I(y)) -> O'(-(x, y))
-'(I(x), I(y)) -> -'(x, y)
GE(O(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> NOT(ge(y, x))
GE(O(x), I(y)) -> GE(y, x)
GE(I(x), O(y)) -> GE(x, y)
GE(I(x), I(y)) -> GE(x, y)
GE(0, O(x)) -> GE(0, x)
LOG'(I(x)) -> +'(Log'(x), I(0))
LOG'(I(x)) -> LOG'(x)
LOG'(O(x)) -> IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
LOG'(O(x)) -> GE(x, I(0))
LOG'(O(x)) -> +'(Log'(x), I(0))
LOG'(O(x)) -> LOG'(x)
LOG(x) -> -'(Log'(x), I(0))
LOG(x) -> LOG'(x)
MIN(N(x, l, r)) -> MIN(l)
MAX(N(x, l, r)) -> MAX(r)
BS'(N(x, l, r)) -> AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
BS'(N(x, l, r)) -> AND(ge(x, Max(l)), ge(Min(r), x))
BS'(N(x, l, r)) -> GE(x, Max(l))
BS'(N(x, l, r)) -> MAX(l)
BS'(N(x, l, r)) -> GE(Min(r), x)
BS'(N(x, l, r)) -> MIN(r)
BS'(N(x, l, r)) -> AND(BS(l), BS(r))
BS'(N(x, l, r)) -> BS'(l)
BS'(N(x, l, r)) -> BS'(r)
SIZE(N(x, l, r)) -> +'(+(Size(l), Size(r)), I(1))
SIZE(N(x, l, r)) -> +'(Size(l), Size(r))
SIZE(N(x, l, r)) -> SIZE(l)
SIZE(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
WB'(N(x, l, r)) -> IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
WB'(N(x, l, r)) -> GE(Size(l), Size(r))
WB'(N(x, l, r)) -> SIZE(l)
WB'(N(x, l, r)) -> SIZE(r)
WB'(N(x, l, r)) -> GE(I(0), -(Size(l), Size(r)))
WB'(N(x, l, r)) -> -'(Size(l), Size(r))
WB'(N(x, l, r)) -> GE(I(0), -(Size(r), Size(l)))
WB'(N(x, l, r)) -> -'(Size(r), Size(l))
WB'(N(x, l, r)) -> AND(WB(l), WB(r))
WB'(N(x, l, r)) -> WB'(l)
WB'(N(x, l, r)) -> WB'(r)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Narrowing Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), I(y)) -> +'(+(x, y), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

+'(I(x), I(y)) -> +'(+(x, y), I(0))
seven new Dependency Pairs are created:

+'(I(0), I(y')) -> +'(y', I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))
+'(I(x''), I(+(y'', z'))) -> +'(+(+(x'', y''), z'), I(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Narrowing Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(I(x''), I(+(y'', z'))) -> +'(+(+(x'', y''), z'), I(0))
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
+'(x, +(y, z)) -> +'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

+'(I(x''), I(+(y'', z'))) -> +'(+(+(x'', y''), z'), I(0))
nine new Dependency Pairs are created:

+'(I(x'''), I(+(y''', 0))) -> +'(+(x''', y'''), I(0))
+'(I(x'''), I(+(y''', +(y', z'')))) -> +'(+(+(+(x''', y'''), y'), z''), I(0))
+'(I(0), I(+(y''', z'))) -> +'(+(y''', z'), I(0))
+'(I(x'''), I(+(0, z'))) -> +'(+(x''', z'), I(0))
+'(I(O(x')), I(+(O(y'), z'))) -> +'(+(O(+(x', y')), z'), I(0))
+'(I(O(x')), I(+(I(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(I(x')), I(+(O(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(I(x')), I(+(I(y'), z'))) -> +'(+(O(+(+(x', y'), I(0))), z'), I(0))
+'(I(x'''), I(+(+(y', z''), z'))) -> +'(+(+(+(x''', y'), z''), z'), I(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 7
Polynomial Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(I(x'''), I(+(+(y', z''), z'))) -> +'(+(+(+(x''', y'), z''), z'), I(0))
+'(I(I(x')), I(+(I(y'), z'))) -> +'(+(O(+(+(x', y'), I(0))), z'), I(0))
+'(I(I(x')), I(+(O(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(O(x')), I(+(I(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(O(x')), I(+(O(y'), z'))) -> +'(+(O(+(x', y')), z'), I(0))
+'(I(x'''), I(+(0, z'))) -> +'(+(x''', z'), I(0))
+'(I(0), I(+(y''', z'))) -> +'(+(y''', z'), I(0))
+'(I(x'''), I(+(y''', +(y', z'')))) -> +'(+(+(+(x''', y'''), y'), z''), I(0))
+'(I(x'''), I(+(y''', 0))) -> +'(+(x''', y'''), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

+'(I(I(x')), I(+(O(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(O(x')), I(+(O(y'), z'))) -> +'(+(O(+(x', y')), z'), I(0))
+'(I(I(x'')), I(O(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(O(x'')), I(O(y''))) -> +'(O(+(x'', y'')), I(0))
+'(I(x), O(y)) -> +'(x, y)
+'(O(x), O(y)) -> +'(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  x1  
  POL(0)=  0  
  POL(O(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 8
Polynomial Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(I(x'''), I(+(+(y', z''), z'))) -> +'(+(+(+(x''', y'), z''), z'), I(0))
+'(I(I(x')), I(+(I(y'), z'))) -> +'(+(O(+(+(x', y'), I(0))), z'), I(0))
+'(I(O(x')), I(+(I(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(x'''), I(+(0, z'))) -> +'(+(x''', z'), I(0))
+'(I(0), I(+(y''', z'))) -> +'(+(y''', z'), I(0))
+'(I(x'''), I(+(y''', +(y', z'')))) -> +'(+(+(+(x''', y'''), y'), z''), I(0))
+'(I(x'''), I(+(y''', 0))) -> +'(+(x''', y'''), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(I(x), I(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

+'(I(I(x')), I(+(I(y'), z'))) -> +'(+(O(+(+(x', y'), I(0))), z'), I(0))
+'(I(O(x')), I(+(I(y'), z'))) -> +'(+(I(+(x', y')), z'), I(0))
+'(I(O(x'')), I(I(y''))) -> +'(I(+(x'', y'')), I(0))
+'(I(x), I(y)) -> +'(x, y)
+'(O(x), I(y)) -> +'(x, y)
+'(I(I(x'')), I(I(y''))) -> +'(O(+(+(x'', y''), I(0))), I(0))


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(0)=  0  
  POL(O(x1))=  0  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(I(x'''), I(+(+(y', z''), z'))) -> +'(+(+(+(x''', y'), z''), z'), I(0))
+'(I(x'''), I(+(0, z'))) -> +'(+(x''', z'), I(0))
+'(I(0), I(+(y''', z'))) -> +'(+(y''', z'), I(0))
+'(I(x'''), I(+(y''', +(y', z'')))) -> +'(+(+(+(x''', y'''), y'), z''), I(0))
+'(I(x'''), I(+(y''', 0))) -> +'(+(x''', y'''), I(0))
+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 10
Instantiation Transformation
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(I(x''), I(0)) -> +'(x'', I(0))
+'(I(0), I(y')) -> +'(y', I(0))


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(I(0), I(y')) -> +'(y', I(0))
one new Dependency Pair is created:

+'(I(0), I(0)) -> +'(0, I(0))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 12
Polynomial Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:

+'(I(x''), I(0)) -> +'(x'', I(0))


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

+'(I(x''), I(0)) -> +'(x'', I(0))


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(0)=  0  
  POL(+'(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 11
Polynomial Ordering
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  0  
  POL(0)=  0  
  POL(O(x1))=  0  
  POL(+(x1, x2))=  1 + x1 + x2  
  POL(+'(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 6
Nar
             ...
               →DP Problem 13
Dependency Graph
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Narrowing Transformation
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

-'(I(x), I(y)) -> -'(x, y)
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(-(x, y), I(1))
-'(O(x), O(y)) -> -'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

-'(O(x), I(y)) -> -'(-(x, y), I(1))
six new Dependency Pairs are created:

-'(O(x''), I(0)) -> -'(x'', I(1))
-'(O(0), I(y')) -> -'(0, I(1))
-'(O(O(x'')), I(O(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(O(x'')), I(I(y''))) -> -'(I(-(-(x'', y''), I(1))), I(1))
-'(O(I(x'')), I(O(y''))) -> -'(I(-(x'', y'')), I(1))
-'(O(I(x'')), I(I(y''))) -> -'(O(-(x'', y'')), I(1))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
           →DP Problem 15
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

-'(O(I(x'')), I(I(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(I(x'')), I(O(y''))) -> -'(I(-(x'', y'')), I(1))
-'(O(O(x'')), I(I(y''))) -> -'(I(-(-(x'', y''), I(1))), I(1))
-'(O(O(x'')), I(O(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(x''), I(0)) -> -'(x'', I(1))
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), O(y)) -> -'(x, y)
-'(I(x), I(y)) -> -'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

-'(O(x''), I(0)) -> -'(x'', I(1))


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  x1  
  POL(0)=  1  
  POL(-'(x1, x2))=  x2  
  POL(1)=  0  
  POL(O(x1))=  x1  
  POL(-(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
           →DP Problem 15
Polo
             ...
               →DP Problem 16
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

-'(O(I(x'')), I(I(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(I(x'')), I(O(y''))) -> -'(I(-(x'', y'')), I(1))
-'(O(O(x'')), I(I(y''))) -> -'(I(-(-(x'', y''), I(1))), I(1))
-'(O(O(x'')), I(O(y''))) -> -'(O(-(x'', y'')), I(1))
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), I(y)) -> -'(x, y)
-'(O(x), O(y)) -> -'(x, y)
-'(I(x), I(y)) -> -'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

-'(O(I(x'')), I(O(y''))) -> -'(I(-(x'', y'')), I(1))
-'(O(O(x'')), I(O(y''))) -> -'(O(-(x'', y'')), I(1))
-'(I(x), O(y)) -> -'(x, y)
-'(O(x), O(y)) -> -'(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  x1  
  POL(0)=  0  
  POL(-'(x1, x2))=  x2  
  POL(1)=  0  
  POL(O(x1))=  1 + x1  
  POL(-(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
           →DP Problem 15
Polo
             ...
               →DP Problem 17
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

-'(O(I(x'')), I(I(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(O(x'')), I(I(y''))) -> -'(I(-(-(x'', y''), I(1))), I(1))
-'(O(x), I(y)) -> -'(x, y)
-'(I(x), I(y)) -> -'(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

-'(O(I(x'')), I(I(y''))) -> -'(O(-(x'', y'')), I(1))
-'(O(O(x'')), I(I(y''))) -> -'(I(-(-(x'', y''), I(1))), I(1))
-'(O(x), I(y)) -> -'(x, y)
-'(I(x), I(y)) -> -'(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(0)=  0  
  POL(-'(x1, x2))=  x2  
  POL(1)=  0  
  POL(O(x1))=  0  
  POL(-(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
           →DP Problem 15
Polo
             ...
               →DP Problem 18
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:

GE(0, O(x)) -> GE(0, x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

GE(0, O(x)) -> GE(0, x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(GE(x1, x2))=  x2  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
           →DP Problem 19
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pairs:

GE(I(x), I(y)) -> GE(x, y)
GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)
GE(O(x), O(y)) -> GE(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pairs can be strictly oriented:

GE(I(x), I(y)) -> GE(x, y)
GE(I(x), O(y)) -> GE(x, y)
GE(O(x), I(y)) -> GE(y, x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(I(x1))=  1 + x1  
  POL(GE(x1, x2))=  1 + x1 + x2  
  POL(O(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 20
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pair:

GE(O(x), O(y)) -> GE(x, y)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

GE(O(x), O(y)) -> GE(x, y)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(GE(x1, x2))=  x1  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 20
Polo
             ...
               →DP Problem 21
Dependency Graph
       →DP Problem 5
Polo


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering


Dependency Pairs:

LOG'(O(x)) -> LOG'(x)
LOG'(I(x)) -> LOG'(x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

LOG'(O(x)) -> LOG'(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(LOG'(x1))=  x1  
  POL(I(x1))=  x1  
  POL(O(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 22
Polynomial Ordering


Dependency Pair:

LOG'(I(x)) -> LOG'(x)


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





The following dependency pair can be strictly oriented:

LOG'(I(x)) -> LOG'(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(LOG'(x1))=  x1  
  POL(I(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Nar
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 22
Polo
             ...
               →DP Problem 23
Dependency Graph


Dependency Pair:


Rules:


O(0) -> 0
+(0, x) -> x
+(x, 0) -> x
+(O(x), O(y)) -> O(+(x, y))
+(O(x), I(y)) -> I(+(x, y))
+(I(x), O(y)) -> I(+(x, y))
+(I(x), I(y)) -> O(+(+(x, y), I(0)))
+(x, +(y, z)) -> +(+(x, y), z)
-(x, 0) -> x
-(0, x) -> 0
-(O(x), O(y)) -> O(-(x, y))
-(O(x), I(y)) -> I(-(-(x, y), I(1)))
-(I(x), O(y)) -> I(-(x, y))
-(I(x), I(y)) -> O(-(x, y))
not(true) -> false
not(false) -> true
and(x, true) -> x
and(x, false) -> false
if(true, x, y) -> x
if(false, x, y) -> y
ge(O(x), O(y)) -> ge(x, y)
ge(O(x), I(y)) -> not(ge(y, x))
ge(I(x), O(y)) -> ge(x, y)
ge(I(x), I(y)) -> ge(x, y)
ge(x, 0) -> true
ge(0, O(x)) -> ge(0, x)
ge(0, I(x)) -> false
Log'(0) -> 0
Log'(I(x)) -> +(Log'(x), I(0))
Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) -> -(Log'(x), I(0))
Val(L(x)) -> x
Val(N(x, l, r)) -> x
Min(L(x)) -> x
Min(N(x, l, r)) -> Min(l)
Max(L(x)) -> x
Max(N(x, l, r)) -> Max(r)
BS(L(x)) -> true
BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) -> I(0)
Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1))
WB(L(x)) -> true
WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:03 minutes