R
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
MIN(s(x), s(y)) -> MIN(x, y)
TWICE(s(x)) -> TWICE(x)
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> -'(y, min(x, y))
F(s(x), s(y)) -> MIN(x, y)
F(s(x), s(y)) -> TWICE(min(x, y))
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> -'(x, min(x, y))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
-'(s(x), s(y)) -> -'(x, y)
POL(-'(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
MIN(s(x), s(y)) -> MIN(x, y)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
MIN(s(x), s(y)) -> MIN(x, y)
POL(MIN(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
MIN(x1, x2) -> MIN(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳Remaining
TWICE(s(x)) -> TWICE(x)
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
TWICE(s(x)) -> TWICE(x)
POL(TWICE(x1)) = x1 POL(s(x1)) = 1 + x1
TWICE(x1) -> TWICE(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Remaining
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining Obligation(s)
F(s(x), s(y)) -> F(-(x, min(x, y)), s(twice(min(x, y))))
F(s(x), s(y)) -> F(-(y, min(x, y)), s(twice(min(x, y))))
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
min(x, 0) -> 0
min(0, y) -> 0
min(s(x), s(y)) -> s(min(x, y))
twice(0) -> 0
twice(s(x)) -> s(s(twice(x)))
f(s(x), s(y)) -> f(-(y, min(x, y)), s(twice(min(x, y))))
f(s(x), s(y)) -> f(-(x, min(x, y)), s(twice(min(x, y))))