R
↳Dependency Pair Analysis
F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y))
F(y, f(x, f(a, x))) -> F(f(a, x), f(x, a))
F(y, f(x, f(a, x))) -> F(x, a)
F(y, f(x, f(a, x))) -> F(a, y)
F(x, f(x, y)) -> F(f(f(x, a), a), a)
F(x, f(x, y)) -> F(f(x, a), a)
F(x, f(x, y)) -> F(x, a)
R
↳DPs
→DP Problem 1
↳Semantic Labelling
F(y, f(x, f(a, x))) -> F(a, y)
F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y))
f(y, f(x, f(a, x))) -> f(f(f(a, x), f(x, a)), f(a, y))
f(x, f(x, y)) -> f(f(f(x, a), a), a)
F(x0, x1) = 1 f(x0, x1) = 0 a = 1
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳Modular Removal of Rules
F00(y, f10(x, f11(a, x))) -> F00(f00(f11(a, x), f11(x, a)), f10(a, y))
F00(y, f00(x, f10(a, x))) -> F00(f00(f10(a, x), f01(x, a)), f10(a, y))
f00(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f10(a, y))
f00(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f10(a, y))
f00(x, f00(x, y)) -> f01(f01(f01(x, a), a), a)
f00(x, f01(x, y)) -> f01(f01(f01(x, a), a), a)
f10(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f11(a, y))
f10(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f11(a, y))
f10(x, f10(x, y)) -> f01(f01(f11(x, a), a), a)
f10(x, f11(x, y)) -> f01(f01(f11(x, a), a), a)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f10(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f11(a, y))
f10(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f11(a, y))
f10(x, f10(x, y)) -> f01(f01(f11(x, a), a), a)
f10(x, f11(x, y)) -> f01(f01(f11(x, a), a), a)
f00(x, f01(x, y)) -> f01(f01(f01(x, a), a), a)
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(a) = 0
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 3
↳Modular Removal of Rules
F00(y, f10(x, f11(a, x))) -> F00(f00(f11(a, x), f11(x, a)), f10(a, y))
f10(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f11(a, y))
f10(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f11(a, y))
f10(x, f10(x, y)) -> f01(f01(f11(x, a), a), a)
f10(x, f11(x, y)) -> f01(f01(f11(x, a), a), a)
f00(x, f01(x, y)) -> f01(f01(f01(x, a), a), a)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
f10(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f11(a, y))
f10(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f11(a, y))
f10(x, f10(x, y)) -> f01(f01(f11(x, a), a), a)
f10(x, f11(x, y)) -> f01(f01(f11(x, a), a), a)
f00(x, f01(x, y)) -> f01(f01(f01(x, a), a), a)
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = 1 + x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = 1 + x1 + x2 POL(f_01(x1, x2)) = x1 + x2 POL(a) = 0
f10(y, f00(x, f10(a, x))) -> f00(f00(f10(a, x), f01(x, a)), f11(a, y))
f10(y, f10(x, f11(a, x))) -> f00(f00(f11(a, x), f11(x, a)), f11(a, y))
f10(x, f10(x, y)) -> f01(f01(f11(x, a), a), a)
f10(x, f11(x, y)) -> f01(f01(f11(x, a), a), a)
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 4
↳Modular Removal of Rules
F00(y, f10(x, f11(a, x))) -> F00(f00(f11(a, x), f11(x, a)), f10(a, y))
f00(x, f01(x, y)) -> f01(f01(f01(x, a), a), a)
POL(f_11(x1, x2)) = x1 + x2 POL(F_00(x1, x2)) = 1 + x1 + x2 POL(f_00(x1, x2)) = x1 + x2 POL(f_10(x1, x2)) = 1 + x1 + x2 POL(a) = 0
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 5
↳Unlabel
F00(y, f10(x, f11(a, x))) -> F00(f00(f11(a, x), f11(x, a)), f10(a, y))
none
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 6
↳Non-Overlappingness Check
F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y))
none
R
↳DPs
→DP Problem 1
↳SemLab
→DP Problem 2
↳MRR
...
→DP Problem 7
↳Instantiation Transformation
F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y))
none
innermost
one new Dependency Pair is created:
F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y))
F(f(f(a, x''), f(x'', a)), f(a, f(a, a))) -> F(f(f(a, a), f(a, a)), f(a, f(f(a, x''), f(x'', a))))