Term Rewriting System R:
[X, Y]
g(X) -> u(h(X), h(X), X)
u(d, c(Y), X) -> k(Y)
h(d) -> c(a)
h(d) -> c(b)
f(k(a), k(b), X) -> f(X, X, X)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

G(X) -> U(h(X), h(X), X)
G(X) -> H(X)
F(k(a), k(b), X) -> F(X, X, X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Non Termination


Dependency Pair:

F(k(a), k(b), X) -> F(X, X, X)


Rules:


g(X) -> u(h(X), h(X), X)
u(d, c(Y), X) -> k(Y)
h(d) -> c(a)
h(d) -> c(b)
f(k(a), k(b), X) -> f(X, X, X)





Found an infinite P-chain over R:
P =

F(k(a), k(b), X) -> F(X, X, X)

R =

g(X) -> u(h(X), h(X), X)
u(d, c(Y), X) -> k(Y)
h(d) -> c(a)
h(d) -> c(b)
f(k(a), k(b), X) -> f(X, X, X)

s = F(u(d, h(d), X'''), u(d, h(d), X'''), u(d, h(d), X'''))
evaluates to t =F(u(d, h(d), X'''), u(d, h(d), X'''), u(d, h(d), X'''))

Thus, s starts an infinite chain.

Non-Termination of R could be shown.
Duration:
0:00 minutes