Term Rewriting System R:
[x, y]
p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

P(p(s(x))) -> P(x)
LE(p(s(x)), x) -> LE(x, x)
LE(s(x), s(y)) -> LE(x, y)
MINUS(x, y) -> IF(le(x, y), x, y)
MINUS(x, y) -> LE(x, y)
IF(false, x, y) -> MINUS(p(x), y)
IF(false, x, y) -> P(x)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

P(p(s(x))) -> P(x)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

The following dependency pair can be strictly oriented:

P(p(s(x))) -> P(x)

The following rules can be oriented:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{true, le} > false > 0
if > 0
p > 0
P > 0
minus > 0
s > 0

resulting in one new DP problem.
Used Argument Filtering System:
P(x1) -> P(x1)
p(x1) -> p(x1)
s(x1) -> x1
le(x1, x2) -> le(x1, x2)
minus(x1, x2) -> x2
if(x1, x2, x3) -> x3

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
LE(p(s(x)), x) -> LE(x, x)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

The following dependency pair can be strictly oriented:

LE(p(s(x)), x) -> LE(x, x)

The following rules can be oriented:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
if > {0, false}
p > {0, false}
minus > {0, false}
LE > {0, false}
s > {0, false}
le > true > {0, false}

resulting in one new DP problem.
Used Argument Filtering System:
LE(x1, x2) -> LE(x1, x2)
s(x1) -> x1
p(x1) -> p(x1)
le(x1, x2) -> le(x1, x2)
minus(x1, x2) -> x2
if(x1, x2, x3) -> x3

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

• Dependency Pairs:

IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

• Dependency Pairs:

IF(false, x, y) -> MINUS(p(x), y)
MINUS(x, y) -> IF(le(x, y), x, y)

Rules:

p(0) -> s(s(0))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)), x) -> le(x, x)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(x, y) -> if(le(x, y), x, y)
if(true, x, y) -> 0
if(false, x, y) -> s(minus(p(x), y))

Termination of R could not be shown.
Duration:
0:19 minutes