Term Rewriting System R:
[dummy, dummy2, x, y, z]
function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)
FUNCTION(plus, dummy, x, y) -> FUNCTION(iszero, x, x, x)
FUNCTION(if, false, x, y) -> FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(if, false, x, y) -> FUNCTION(third, x, y, y)
FUNCTION(if, false, x, y) -> FUNCTION(p, x, x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Remaining


Dependency Pair:

FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)


Rules:


function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z





The following dependency pair can be strictly oriented:

FUNCTION(p, s(s(x)), dummy, dummy2) -> FUNCTION(p, s(x), x, x)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(FUNCTION(x1, x2, x3, x4))=  1 + x2  
  POL(s(x1))=  1 + x1  
  POL(p)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

FUNCTION(if, false, x, y) -> FUNCTION(plus, function(third, x, y, y), function(p, x, x, y), s(y))
FUNCTION(plus, dummy, x, y) -> FUNCTION(if, function(iszero, x, x, x), x, y)


Rules:


function(iszero, 0, dummy, dummy2) -> true
function(iszero, s(x), dummy, dummy2) -> false
function(p, 0, dummy, dummy2) -> 0
function(p, s(0), dummy, dummy2) -> 0
function(p, s(s(x)), dummy, dummy2) -> s(function(p, s(x), x, x))
function(plus, dummy, x, y) -> function(if, function(iszero, x, x, x), x, y)
function(if, true, x, y) -> y
function(if, false, x, y) -> function(plus, function(third, x, y, y), function(p, x, x, y), s(y))
function(third, x, y, z) -> z




Termination of R could not be shown.
Duration:
0:00 minutes