Term Rewriting System R:
[N, X, Y, Z]
terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

TERMS(N) -> SQR(N)
TERMS(N) -> TERMS(s(N))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)
HALF(s(s(X))) -> HALF(X)

Furthermore, R contains six SCCs.

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

R
DPs
→DP Problem 1
Remaining Obligation(s)
→DP Problem 2
Remaining Obligation(s)
→DP Problem 3
Remaining Obligation(s)
→DP Problem 4
Remaining Obligation(s)
→DP Problem 5
Remaining Obligation(s)
→DP Problem 6
Remaining Obligation(s)

The following remains to be proven:
• Dependency Pair:

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

DBL(s(X)) -> DBL(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

FIRST(s(X), cons(Y, Z)) -> FIRST(X, Z)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

HALF(s(s(X))) -> HALF(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

SQR(s(X)) -> SQR(X)

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
half(0) -> 0
half(s(0)) -> 0
half(s(s(X))) -> s(half(X))
half(dbl(X)) -> X

• Dependency Pair:

TERMS(N) -> TERMS(s(N))

Rules:

terms(N) -> cons(recip(sqr(N)), terms(s(N)))
sqr(0) -> 0
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))