R
↳Dependency Pair Analysis
F(s(X)) -> F(X)
G(cons(0, Y)) -> G(Y)
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(X, Y)) -> G(cons(X, Y))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
F(s(X)) -> F(X)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
F(s(X)) -> F(X)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
POL(0) = 1 POL(g(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(h(x1)) = 0 POL(f(x1)) = 0 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
G(cons(0, Y)) -> G(Y)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
G(cons(0, Y)) -> G(Y)
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
POL(0) = 1 POL(g(x1)) = 0 POL(cons(x1, x2)) = x1 + x2 POL(G(x1)) = x1 POL(s(x1)) = 0 POL(h(x1)) = 0 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
H(cons(X, Y)) -> H(g(cons(X, Y)))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
H(cons(X, Y)) -> H(g(cons(X, Y)))
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))
POL(0) = 0 POL(g(x1)) = 0 POL(cons(x1, x2)) = 1 POL(s(x1)) = 0 POL(h(x1)) = 0 POL(H(x1)) = x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))