Term Rewriting System R:
[X, Y]
f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(X)) -> F(X)
G(cons(0, Y)) -> G(Y)
H(cons(X, Y)) -> H(g(cons(X, Y)))
H(cons(X, Y)) -> G(cons(X, Y))

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

F(s(X)) -> F(X)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





The following dependency pair can be strictly oriented:

F(s(X)) -> F(X)


The following rules can be oriented:

f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
cons(x1, x2) -> cons(x1, x2)
h(x1) -> h


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

G(cons(0, Y)) -> G(Y)


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





The following dependency pair can be strictly oriented:

G(cons(0, Y)) -> G(Y)


The following rules can be oriented:

f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
cons(x1, x2) -> cons(x1, x2)
f(x1) -> f(x1)
s(x1) -> s(x1)
g(x1) -> g(x1)
h(x1) -> h


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

H(cons(X, Y)) -> H(g(cons(X, Y)))


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





The following dependency pair can be strictly oriented:

H(cons(X, Y)) -> H(g(cons(X, Y)))


The following rules can be oriented:

g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
f(s(X)) -> f(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
cons > g > s

resulting in one new DP problem.
Used Argument Filtering System:
H(x1) -> H(x1)
cons(x1, x2) -> cons(x1, x2)
g(x1) -> g
s(x1) -> s
f(x1) -> f
h(x1) -> h(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


f(s(X)) -> f(X)
g(cons(0, Y)) -> g(Y)
g(cons(s(X), Y)) -> s(X)
h(cons(X, Y)) -> h(g(cons(X, Y)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes