Term Rewriting System R:
[X, Y]
+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(X, s(Y)) -> +'(X, Y)
F(0, s(0), X) -> F(X, +(X, X), X)
F(0, s(0), X) -> +'(X, X)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Size-Change Principle
       →DP Problem 2
NonTerm


Dependency Pair:

+'(X, s(Y)) -> +'(X, Y)


Rules:


+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y





We number the DPs as follows:
  1. +'(X, s(Y)) -> +'(X, Y)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Non Termination


Dependency Pair:

F(0, s(0), X) -> F(X, +(X, X), X)


Rules:


+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y





Found an infinite P-chain over R:
P =

F(0, s(0), X) -> F(X, +(X, X), X)

R =

+(X, 0) -> X
+(X, s(Y)) -> s(+(X, Y))
f(0, s(0), X) -> f(X, +(X, X), X)
g(X, Y) -> X
g(X, Y) -> Y

s = F(g(s(0), 0), +(g(s(0), 0), g(s(0), 0)), g(s(0), 0))
evaluates to t =F(g(s(0), 0), +(g(s(0), 0), g(s(0), 0)), g(s(0), 0))

Thus, s starts an infinite chain.

Non-Termination of R could be shown.
Duration:
0:04 minutes